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PREFACE 

This r e p o r t  w a s  prepared by t h e  For t  Worth opera t ion  of 

Convair Aerospace Division,  General Dynamics Corporation, under 

Contract N o .  NAS8-18024, Evaluation of Cryogenic I n s u l a t i o n  

Materials and Composites f o r  Use i n  Nuclear R ld ia t ion  Environ- 

ments, f o r  t h e  George C. Marshall  Space F l i g h t  Center of t h e  

National  Aeronautics and Space Administration. The work w a s  

administered under t h e  t e c h n i c a l  d i r e c t i o n  of the  Propulsion 

and Vehicle Engineering Divis ion,  Engineering Materials Branch 

of t h e  George C .  Marshall  Space F l i g h t  Center,  with D r .  R. L.  

Gause a c t i n g  as p r o j  ec t manager. 

iii M378 



TABLE OF CONTENTS 

........................ PART I . Composite Materials Test i 

PART 11 . Test of Liquid-Level Sensors and Fissioncouples ........ 21 

...................... PART I11 . Test of Valve-Seal Materials 49 

........................ PART IV . Boron-Epoxy Composites 81 

PART v . Radiation Analysis of Explosive Materials and Bifuels 
for  RNS Applications ............................. 107 

PART VI; Test of Thermal Insulation ...................... 145 

V 



Part I 

COMPOSITE MATERIALS TEST 
FZK-385 

R. E. BULLOCK 
E. E. KERLIN 
J. E. WARWICK 



FOREWORD 

The r a d i a t i o n  effects test  described i n  t h i s  r e p o r t  i s  a 

p a r t  of technology s t u d i e s  conducted a t  t h e  Nuclear Aerospace 

Research F a c i l i t y  i n  support  of  nuclear  rocket  v e h i c l e  develop- 

ment. The material specimens were i r r a d i a t e d  during a tes t  con- 

ducted fo r  NASA/SNSO-C i n  o rde r  t o  take advantage of t h e  higher  

exposure levels than would be a v a i l a b l e  i n  t h e  i r r a d i a t i o n s  

made under Contract NAS8-18024. This tes t ,  designated GTR-20C, 

w a s  a 6000-MWh i r r a d i a t i o n  of NERVA materials and components. 

I n  add i t ion  t o  t h e  composite materials, t w o  p ressure  t ransducers  

w e r e  a l s o  i r r a d i a t e d  fo r  NASAjMSFC during GTR-20C; r e s u l t s  of 

t h a t  t es t  are given i n  r e p o r t  FZK-372. 

i 

The  t e s t e d  composites are research  materials and are not  

r e a d i l y  a v a i l a b l e ;  t h e r e f o r e ,  t h e  authors  wish t o  express t h e i r  

apprec ia t ion  t o  t h e  following persons f o r  making them ava i l ab le :  

M r .  E .  C .  McKannon of NASA/MSFC f o r  t h e  boron-aluminum tens ion  

specimens; M r .  W. G ,  Scheck of Convair San Diego f o r  t h e  graphi te-  

epoxy tens ion  specimens; and M r .  R. L. Van Auken o f  t h e  Whittaker 

Corp. f o r  t h e  f i b e r - g l a s s  re inforced polyquinoxaline.  
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I. INTRODUCTION 

Composite materials are being developed t o  perform s p e c i a l  

funct ions  i n  aerospace veh ic les .  The s p e c i a l  p rope r t i e s  of t he se  

materials are achieved by c a r e f u l  s e l e c t i o n  and f a b r i c a t i o n  of  . 

t h e  cons t i t uen t s  t o  take advantage of p a r t i c u l a r l y  d e s i r a b l e  

features of each. A t e s t  has been performed t o  eva lua te  t h e  

e f f e c t s  of r e a c t o r  r a d i a t i o n  on t h r e e  such materials - a boron- 

aluminum composite, a graphite-epoxy composite, and f ibe r- g la s s  

re in forced  polyquinoxaline. 

aluminum and graphite-epoxy and gaskets  of t h e  polyquinoxaline 

w e r e  i r r a d i a t e d  during a 600-h run w i t h  t h e  Ground T e s t  Reactor 

(GTR) operat ing a t  a power level of 10 Mw. 

Tension specimens of t h e  boron- 

T h i s  work w a s  conducted a t  t h e  Nuclear Aerospace Research 

F a c i l i t y  (NARF) operated by t h e  Fo r t  Worth operat ion of t h e  

Convair Aerospace Division of General Dynamics f o r  t h e  George C. 

Marsha l l  Space F l i g h t  Center of t h e  National  Aeronautics and 

Space Administration under Contract  NAS8-18024. 

NAS8-18024, t h e  Fo r t  Worth opera t ion  has performed numerous 

Under Contract 

r a d i a t i o n  e f f e c t s  experiments OLI organic materials and thermal 

i n su l a t i ons  as a p a r t  of t h e  technology program support ing t h e  ’ 

development of a nuclear  rocket  veh ic le .  
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11. DESCRIPTION OF TEST 

2 . 1  T e s t  Specimens 

Three types of composite materials were t e s t e d  i n  t h e  ex- 

p-eriment described he re in :  (1) graphite-epoxy, ( 2 )  boron- 

aluminum, and ( 3 )  f ibe r- g lass  re inforced polyquinoxaline,  both 

p l a i n  and Kapton covered. Specimens of these  composites were 

wired t o  pe r fo ra ted  aluminum shee t s  ( 7  in .  x 9 i n . )  t o  make up 

t h e  four  i r r a d i a t i o n  panels  shown i n  Figure  1. 

2 .1 .1  Graphite-Epoxy Composite 

Ten graphite-epoxy tens ion  specimens (6 i n .  x 0.5 in .  x 

0.06 i n . )  w e r e  suppl ied ,  a t  t h e  reques t  of D r ,  R.  L. Gause o f  

NASA/MSFC, by M r .  W. G. Scheck, Convair Aerospace Division o f  

General Dynamics, San Diego operat ion.  Four of  t h e s e  specimens 

w e r e  r e t a i n e d  as un i r rad ia ted  c o n t r o l s  and t h r e e  each w e r e  

a t t ached  t o  panels  2 and 4 (Fig. 1). 

2.1.2 Boron-Aluminum Composite 

Twelve boron-aluminum tens ion  specimens ( 4  i n .  x 0.5 in .  x 

0.02 in . )  from t w o  d i f f e r e n t  sources were i r r a d i a t e d .  S ix  

specimens (1-6), a l l  apparent ly  i d e n t i c a l ,  were provided by 

M r ;  E. 6. McKannan of NASA/MSFC; these  w e r e  a l l  i r r a d i a t e d  on 

panel  1 (Fig. 1). Six (7-12) were provided by M r .  W. G. Scheck 

4 
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a t  t h e  reques t  of D r .  R. L. Gause; two each of  t h e s e  from t h r e e  

d i f f e r e n t  batches of materials w e r e  i r r a d i a t e d  on tes t  panels  

1, 2,  and 4 (Fig. 1). 

2.1.3 Reinforced Polyquinoxaline 

Six teen  fiber-glass re in fo rced  polyquinoxaline gaskets  w e r e  

supplied by M r .  R. L. Van Auken of Whittaker Corporation a t  t h e  

reques t  of  D r .  Gause. H a l f  of  these  were covered wi th  a Kapton 

f i l m  and h a l f  w e r e  p l a i n .  The Kapton-covered gaskets  are shown 

on panel  3 of Figure  1. This panel  i s  doubled l i k e  a c losed  

book; i t  i s  shown unfolded i n  Figure 2 af ter  having been irra- 

d ia ted .  

gaskets  are on t h e  r i g h t .  

2.2 I r r a d i a t i o n  of Specimens 

The p l a i n  gaskets are on t h e  l e f t  and t h e  Kapton-covered 

The four  test  panels  of composite materials described above 

were i r r a d i a t e d  with t h e  Ground Test Reactor (GTR) during a 

6000-MWh r e a c t o r  run from 21May-19 June 1970. The r e a c t o r  w a s  

operated a t  i t s  f u l l  power of  10 Mw f o r  600 h. All four  of t h e  

test  panels  were i r r a d i a t e d  i n  a i r  a t  t h e  w e s t  test pos i t ion .  

These test  panels  w e r e  loca ted  along t h e  w e s t  c e n t e r l i n e  o f  t h e  

reactor c o r e  a t  va r ious  d i s t ances  from t h e  r e a c t o r  c l o s e t  (Fig. 3 ) .  

Locations of  t h e  va r ious  test panels  and r a d i a t i o n  exposure 

doses a t  t h e s e  p o s i t i o n s  are l i s t e d  i n  Table 1. Subsequent t o  

t h e  photograph of Figure  3 ,  t h e  tes t  panels  w e r e  a l l  wrapped i n  

6 
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heavy aluminum f o i l  t o  minimize r ad ioac t ive  contamination of 

t h e  specimens during i r r a d i a t i o n .  

P r i o r  t o  t h e  6000-MWh i r r a d i a t i o n ,  a s h o r t ,  low-power mapping 

i r r a d i a t i o n  w a s  made f o r  t h e  purpose of  measuring neutron f luxes  

and gamma dose rates. 

and coba l t  g l a s s  gamma dosimeters i n  conjunction wi th  neutron 

measurements made during t h e  6 0 0 0 - ~  i r r a d i a t i o n  were used t o  

Data from t h e  neutron de tec t ing  f o i l s  

determine t h e  r a d i a t i o n  exposures. 

Table 1 

RADIATION DOSES AT TEST PANEL POSITIONS 

Distance From 
Reactor 
Closet  

( i n . )  

12 

23 

28 

374  

- 

Fas t  -Neutron 
F luence 

E > 1 MeV 
(n/cm2) 

7.5 

17 4 . 2  x 10 

2.9 1017 

1.0 x 1oI2 

5.8 x 10" 

4 . 5  x 1011 

2 . 7  x 10" 

Thermal- 
Neutron 
Fluence 

E < 0 . 4 8  e V  

3 . 0  x 10' 

( n / c m 2 )  

3 . 4  x 101' 

3 . 3  x 101 

3 . 2  x lo1' 

aGamma doses f o r  t h e  6080-MWh run were ca l cu l a t ed  by taking t h e  
r a t i o s  of  gamma dose t o  fas t- neutron f luence determined from . 
t h e  mapping i r r a d i a t i o n  and mul t ip lying these  by t h e  measured 
fas t- neutron f luences  of column 3 .  
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2.3 Radiat ion Dosimetry 

The fast- and thermal-neutron f luences  given i n  Table 1 

w e r e  measured during t h e  6000-MWh r e a c t o r  run by s tandard 

a c t i v a t i o n  techniques. The fas t- neutron f luence above 1 MeV 

w a s  measured wi th  2 - m i l  n i cke l  f o i l s ;  t h e  (n ,p)  r e a c t i o n  wi th  

N i 5 8  produces C058 which has a h a l f - l i f e  of  7 1  days. 

neutron f luences  w e r e  determined by exposing p a i r s  of 100-mil 

phosphorous disks, one bare  and one covered wi th  a 20-mil th ick-  

ness o f  cadmium. 

r e s u l t i n g  from t h e  (n ,y)  r e a c t i o n  (Tk = 14.3  d) i s  used t o  

compute t h e  f luence of neutrons below t h e  cadmium cu to f f  energy 

Thermal- 

The cadmium-difference a c t i v i t y  of t h e  P 32 

of 0.48 eV.  

Because gamma dosimeters s u i t a b l e  f o r  measuring t h e  doses 

t o  which t h e  composite specimens w e r e  exposed are not  avail- 

ab le ,  t h e  gamma doses i n  Table 1 w e r e  obtained by use of a 

measured gamma-to-neutron r a t i o .  

t h e  low-dose mapping i r r a d i a t i o n  and t h e n  app l ied  t o  t h e  f a s t -  

T h i s  r a t i o  w a s  measured during 

neutron f luence of Table 1. T h i s  procedure assumes constancy 

of t h e  gamma-to-neutron r a t i o  i n  both runs. 

2.4 Mechanical Test ing of Specimens 

- 2.4.1 Tension Test ing 

The graphite-epoxy and boron-aluminum tension specimens 

were mechanically t e s t e d  a t  room temperature i n  t h e  Process 

10 



111. TEST RESULTS 

3.1 Graphite-Epoxy Specimens 

Ind iv idua l  and average t e n s i l e  s t r e n g t h s  of un i r r ad i a t ed  

con t ro l  specimens and of specimens i r r a d i a t e d  on test panels  

2 and 4 (Table 1) are l i s t e d  i n  Table 2 .  These specimens were 

i r r a d i a t e d  a t  ambient a i r  temperature (<l20 F) and w e r e  mechani- 

c a l l y  t e s t e d  a t  room temperature. 

of t h e  un i r r ad i a t ed  con t ro l s  w a s  115 k s i ,  wh i l e  t h e  i r r a d i a t e d  

0 

The average t e n s i l e  s t r eng th  

specimens on panels  2 and 4 had average s t r eng ths  of 111 and 110 

ks i ,  r e spec t ive ly .  Thus, no e f f e c t s  of r a d i a t i o n  were observed 

on t e n s i l e  s t r eng ths  of graphite-epoxy composites. 

Table 2 

TENSILE STRENGTHS OF GRAPHITE-EPOXY SPECIMENS 

Tens i le  S t rength  (ksi) 
Controls  Panel 2 Panel 4 

117 

114 

112 

103 

116 

114 

101 - 120 - 111 I 
- 119 111 110 

115 

14 



Control  Laboratory by u t i l i z i n g  a se l f- a l ign ing  tes t  f i x t u r e  

which g ives  cons i s t en t  r e s u l t s  f o r  such specimens. All spec i-  

mens w e r e  loaded t o  f a i l u r e  i n  an In s t ron  machine a t  a p u l l  rate 

of 0.05 in./min. U l t i m a t e  t e n s i l e  s t r eng ths  ( i n  p s i )  f o r  these 

specimens w e r e  c a l cu l a t ed  by d iv id ing  t h e  f a i l u r e  loads ( l b )  . 

by t h e  uniform c ros s- sec t iona l  areas ( in .2 )  of t h e  specimens. 

2.4.2 Compression Test ing 

The f ibe r- g la s s  re in forced  polyquinoxaline gasket  specimens 

w e r e  t e s t e d  a t  room temperature i n  t h e  I r r a d i a t e d  Materials 

Laboratory during Apr i l  1971. Two types of compression tests 

w e r e  made on t h e s e  c i r c u l a r  samples. The f i r s t  cons i s ted  of 

loading t h e  samples between t h e  compression pads of t h e  20,000- 

l b  In s t ron  tester.  After  a 15,000-lb load w a s  app l ied  t h e  

r e s u l t i n g  th ickness  of t h e  sample w a s  measured. The th ickness  

w a s  again measured one hour a f t e r  t he  load w a s  removed. 

The second test w a s  a load d e f l e c t i o n  t e s t  performed by 

use of a s p e c i a l  f i x t u r e  (Fig. 4)  loaned by Whittaker Corp. 

This tes t  f i x t u r e  w a s  used wi th  t h e  20,000-lb Ins t ron .  A l i n e a r  

v a r i a b l e  d i f f e r e n t i a l  t ransformer (LVDT) w a s  used as t h e  sensing 

element t o  determine t h e  compression-vs-load c h a r a c t e r i s t i c s .  

The LVDT output  which r ep re sen t s  t h e  compression r e s u l t i n g  

from a load 

x-y p l o t t e r  

on t h e  j i g  w a s  recorded as t h e  y coordinate  on an 

and t h e  corresponding load w a s  recorded on t h e  



Rod 

/Cover 

Gasket 

Transducer 

Wire Leads 

Cross Head 

3 
Figure 4 Compression Test Fixture for Gaskets 
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x coordinate .  A block diagram of t h e  e x c i t a t i o n  and read-out 

apparatus i s  shown below: 

Displacement w a s  c a l i b r a t e d  over t h e  usage range of  t h e  

LVDT by means of a micrometer c a l i p e r  graduated i n  0.0001 in .  

The o rd ina t e  of t h e  x-y p l o t t e r  w a s  se t  t o  f u l l  scale f o r  0.005- 

i n .  displacement of LVDT. 

set t o  f u l l  scale f o r  5000-lb load as de tec ted  by t h e  load ce l l .  

The absc i s sa  of  t h e  x-y p l o t t e r  w a s  

The gasket  material w a s  i n i t i a l l y  loaded t o  800 lb and t h e  

LVDT w a s  set t o  zero  a t  t h a t  po in t .  The load w a s  a l t e r n a t e l y  

appl ied and removed t en  t i m e s  f o r  each specimen. The f i r s t ,  

second, and ten th  cyc les  w e r e  recorded on t h e  x-y p l o t t e r .  

13 



3.2 Boron-Aluminum Specimens 

Ind iv idua l  and average t e n s i l e  s t r eng ths  of con t ro l s  and 

of i r r a d i a t e d  specimens are given i n  Table 3 .  The t h r e e  p a i r s  

of B-A1 specimens suppl ied by Convair Aerospace Division of 

General D y n a m i c s ,  San Diego operat ion,  w e r e  from t h r e e  d i f f e r e n t  

batches of material, des ignated 397 L2, 399 L2, and 402 L 2 ,  but 

a l l  of t h e  specimens w e r e  55% boron f i lament by volume. 

w a s  ve ry  l i t t l e  d i f f e r ence  i n  s t r eng th  from batch t o  batch,  

and t h e r e  w a s  l i t t l e  d i f f e r ence  between con t ro l s  and i r r a d i a t e d  

There  

specimens 

s t r eng th  of  145 k s i ,  w h i l e  t h e  average c o n t r o l  s t r eng th  w a s  

149 k s i .  

provided by NASA/MSFC w a s  124 k s i .  

The s i x  i r r a d i a t e d  specimens had an average t e n s i l e  

The average t e n s i l e  s t r eng th  of t h e  B-A1 specimens 

No c o n t r o l  values  w e r e  given,  

but t h i s  s t r eng th  seems reasonable  s i n c e  t hese  specimens were 

only 45% boron by volume. 

3.3 Reinforced Polyquinoxaline 

Ind iv idua l  th ickness  measurements f o r  t h e  polyquinoxaline 

specimens compressed under 15,000-lb load are given i n  Table 4 .  

Table 5 conta ins  t h e  d e f l e c t i o n  da t a  f o r  t h e  c y c l i c  loading 

along w i t h  t h e  o r i g i n a l  and f i n a l  thicknesses.  Although there  . 

are some ind ica t ions  i n  t h i s  d a t a  of r a d i a t i o n  e f f e c t s ,  t h e  

changes i n  compression p rope r t i e s  due t o  r a d i a t i o n  are s l i g h t .  

15 



Table 3 

TENSILE STRENGTHS OF BORON-ALUMINUM SPECIMENS 

T e n s i l e  S t r  
C o n t r o l s  a 

t 
Panel  
N u m b e r  

1 

2 

4 

1 

nqth ( k s i )  
I r r a d i a t e d  

Batch 
N u m b e r  

397L2 

402L2 

399L2 

NASA/ 
MSFC 

13 1 
170 
17 1 
153 
156 

175 
16 9 
12 8 
12 3 
14 9 

154 
14 0 
12 9 
147 
14 3 

.- 

- 

165 
130 
148 
- 

14 0 
14 1 
14 1 
- 

148 
14 6 
14 7 
- 

12 9 
12 2 
12 3 
94 
130 
14 3 
124 
- 

= These con t ro l  s t r e n g t h s  were supplied by  a 

Mu. W. G. Scheck i n  a telephone conversa t ion  
of 13 A u g u s t  1970. 
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Because of t h e  rather s m a l l  changes and t h e  l imi t ed  number of  

specimens t e s t e d ,  t h e  e f f e c t s  cannot be s a i d  t o  be s t a t i s t i c a l l y  

s i g n i f i c a n t .  The observat ions  c i t e d  below confirm, however, 

t h a t  t h e  i n t e g r i t y  of t h e  materials were adversely  a f f e c t e d  a t  

t h e  exposure levels involved. 

One sample of each of t h e  two materials w a s  t o rn  apa r t .  

The i r r a d i a t e d  Kapton covered gasket  (PI-13) seemed t o  delaminate 

more e a s i l y  than t h e  c o n t r o l  gasket  and t h e  Kapton f i lm  could 

be removed much more r e a d i l y .  The i r r a d i a t e d  gaskets  w e r e  a l s o  

less f l e x i b l e  than t h e  con t ro l .  The Kapton f i lm removed from 

t h e  i r r a d i a t e d  gasket  w a s  very weak and could be t o rn  about as 

e a s i l y  as an equal  th ickness  of paper. The f i lm from t h e  un- 

i r r a d i a t e d  gasket  w a s  very  tough and could be t o rn  only w i t h  

g r ea t  d i f f i c u l t y .  

The i r r a d i a t e d  p l a i n  gasket  (PQ-1) delaminated much more 

e a s i l y  than t h e  con t ro l  and t h e  laminate material f l aked  e a s i l y .  

T h i s  could account f o r  t h e  observation t h a t  i r r a d i a t e d  gaskets  

appeared t o  be more f l e x i b l e  than t h e  c o n t r o l  gasket .  

un i r r ad i a t ed  laminate material would tear but  not  f l ake ,  

The 
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TEST OF LIQUID-LEVEL SENSORS 
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SUMMARY 

An i r r a d i a t i o n  t e s t  has been performed on level  sensors  
s u i t a b l e  f o r  use i n  gaging the he igh t  of l i q u i d  hydrogen i n  a 
p rope l l an t  tank.  A continuous capaci tance probe 40 i n .  long 
and several  each of po in t  sensors  of capaci tance,  thermal,  and 
magnetos t r ic t ive  types were i r r a d i a t e d  i n  a l i q u i d  hydrogen 
dewar and evaluated f o r  accuracy of measurement both dur ing 
and between i r r a d i a t i o n  cyc les .  The Ground T e s t  Reactor was 
operated a t  several power levels  up t o  5 MI?, t o  i n v e s t i g a t e  
r a d i a t i o n  rate  e f f e c t s ,  and f o r  a s u f f i c i e n t  t i m e  t o  expose 
t h e  sensors  t o  a r a d i a t i o n  dose exceeding t h a t  p red ic ted  €or 
t e n  missions of t h e  Reusable Nuclear Shu t t l e .  The i r r a d i a t i o n  
was conducted i n  f i v e  cycles  w i t h  t h e  dewar being allowed t o  
warm t o  about 5S°F a f t e r  each i r r a d i a t i o n .  Data were obtained 
by varying t h e  l i q u i d  hydrogen l eve l  and observing t h e  output 
and/or r e s i s t a n c e  of t h e  sensors .  
'the capac i t i ve  sensors  were a l s o  measured. 

Dielectr ic  p rope r t i e s  of 

The continuous capaci tance probe began showing a r ad i a-  
t i o n  r a t e  effect  a t  a I-MM power l eve l  (- 3 x 107 
(C)-h) due t o  an apparent increase  i n  capaci tance.  The magni- 
tude of t h i s  effect  depended upon t h e  length  of probe exposed 
t o  gaseous hydrogen as well as the r a d i a t i o n  ra te .  A t  5 MW, 
t h e  probe ind ica ted  a l eve l  of 35 in .  when t h e  a c t u a l  l eve l  
was 24 i n .  No permanent r a d i a t i o n  e f fec t  w a s  observed. 

ergs/gm 

Thermal po in t  sensors  having r e s i s t a n c e  elements of gold- 
p l a t ed  platinum w i r e  and n icke l- i ron  wire were e s s e n t i a l l y  un- 
a f f e c t e d  by t h e  i r r a d i a t i o n ,  Some problems were encounted 
wi th  u n i r r a d i a t i o n  c o n t r o l  u n i t s ,  howevera The thermal poin t  
sensor  having a germanium element ind ica ted  a change i n  re-  
s i s t a n c e  wi th  prolonged i r r a d i a t i o n .  S ign i f i can t  temporary 
r a d i a t i o n  effects  were observed dur ing t h e  cyc les  imparting 
the highest t o t a l  neutron exposure, This ef fec t  became s i g n i -  
f i c a n t  a t  a neutron f luence  of about 2 x 1014 n/cm2 (E > 1 
MeV).  

' The magnetos t r ic t ive  po in t  sensors  performed sa t i s fac-  
t o r i l y  throughout t h e  t es t .  

The capaci tance po in t  sensors  exhib i ted  r a t e  e f f e c t s  
sf-milar t o  those  o f  t h e  continuous probe. It was observed 
t h a t  sensors  i n  t h e  hydrogen gas would i n t e r m i t t e n t l y  i n d i c a t e  
l i q u i d .  
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Fiss ion  thermopile assemblies cons i s t i ng  of t e n  uranium 
and t e n  bismuth beads were included i n  t h i s  t e s t .  However, 
all u n i t s  f a i l e d  by open c i r c u i t  during the i n i t i a l  thermal 
cycl ing and no f u r t h e r  information was obtained. 
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I. IJATRODUCTION 

An i r r a d i a t i o n  t es t  has been performed for  the purpose of 
eva lua t ing  l i q u i d- l e v e l  sensors  f o r  p o t e n t i a l  use on a nuclear  
powered veh ic le .  The sensors  were i r r a d i a t e d  i n  l i q u i d  hydro- 
gen and thermal cycled af ter  each of f ive  i r r a d i a t i o n  s t e p s  a t  
power levels up t o  5 MW w i t h  the Ground T e s t  Reactor. Data 
were taken during i r r a d i a t i o n  t o  eva lua te  ra te  effects and 
a f t e r  each i r r a d i a t i o n  s t e p  t o  determine permanent damage 
e f f e c t s .  Eighteen po in t  sensors  of thermal, capaci tance,  and 
magnetos t r ic t ive  types and one 40-in. long continuous capaci-  
t ance  probe were t e s t e d .  

This work w a s  conducted a t  t h e  Nuclear Aerospace Research 
F a c i l i t y  (NARF) operated by t h e  Fort  Worth operat ion of the  
Convair Aerospace Division of General Dynamics f o r  t h e  George 
C. Marshall Space F l i g h t  Center of t h e  National  Aeronautics 
and Space Administration under Contract NAS8-18024. Under 
Contract NAS8-18024, For t  Worth operat ion has performed 
numerous r a d i a t i o n  effects  experiments on organic materials 
and thermal i n s u l a t i o n s  as a p a r t  o f  t h e  technology program 
support ing t h e  development of the Nuclear Rocket Vehicle. 
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11. DESCRIPTION O F  TEST 

2 . 1  T e s t  Articles 

2.1.1 Liquid-Level Sensors 

Three types of level sensors  - thermal,  capac i t ive ,  and 
magnetos t r ic t ive  - s u i t a b l e  f o r  use i n  l i q u i d  hydrogen were 
evaluated.  
crete (point)  sensors  and the capaci tance sensors  w e r e  of both - 

The thermal and magnetos t r ic t ive  devices w e r e  d i s -  

p o i n t  and continuous types.  
which are described by type below. 

Table 1 i d e n t i f i e s  the sensors  

Table 1 
LIQUID-LEVEL SENSORS 

Type 

Thermal (poin t )  

Thermal (point)  

Thermal (point)  

Magnet os t r i c t  ive 
(P 0 int ,  

Capacitance 
(poin t )  

Capacitance 
(continuous) 

Manufacturer 

Acous t ica Associates  

United Control Corp. 

S c i e n t i f i c  Instruments 

Conrac Corp. 

Transonics 

Transonics 

Model No. 

STS 505 

2641 

3 

UP1004S-5 

L4447 

116945 

Zuantity 

6 

3 

3 

3 

3 

1 

Thermal (point)  - a d i s c r e t e  l i q u i d- l e v e l  sensor  t h a t  
c o n s i s t s  of some type of r e s i s t a n c e  element whose r e s i s t a n c e  
undergoes a s t e p  change when t h e  cryogenic medium i s  changed 
from l i q u i d  t o  gas. The sensors  were f a b r i c a t e d  by t h r e e  
manufacturers and employ d i f f e r e n t  r e s i s t a n c e  elements - gofd- 
p la ted  platinum w i r e ,  n ickel- i ron  w i r e ,  and p-type germanium, 

Capacitance (continuous) - a continuous l i q u i d- l e v e l  sen- 
sor t h a t  c o n s i s t s  of concent r ic  cy l inders  forming an a i r  gap 
capaci tor .  Operation of t h e  system i s  based upon d e t e c t i n g  
t h e  d i f f e r e n c e  i n  capaci tance obtained when t h e  sensor  i s  grad- 
u a l l y  t r a n s f e r r e d  from a li uid (high d i e l e c t r i c  cons tant )  en- 
vironment t o  a gas (low d i e  s ec t r i c  cons tant )  environment. 
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Capacitance (point)  - a d i s c r e t e  l i q u i d- l e v e l  sensor  that  
opera tes  on the same p r i n c i p l e  as t h e  continuous capaci tance 
senspr .  The sensors  c o n s i s t  of four  coplaner concent r ic  r ings .  
An off /on s i g n a l  i s  provided by assoc ia ted  c i r c u i t r y  when the 
capaci tance changes due t o  t h e  presence or  absence of l i q u i d  
between t h e  r ings .  

Magnetos t r ic t ive  (point)  - a d i s c r e t e  l i q u i d- l e v e l  sensor  
using t h e  p r i n c i p l e  of damped o s c i l l a t i o n .  Signal  levels are 
s o  adjus ted  as t o  maintain o s c i l l a t i o n  i n  t h e  n i c k e l  rod only 
when the probe (sensor) t i p  is  exposed t o  a compressible f l u i d  
such as gaseous hydrogen. As soon as the probe t i p  encounters 
a non-compressible f l u i d  such as l i q u i d  hydrogen, the v ibra-  
t i o n  i s  damped so that  o s c i l l a t i o n  s tops .  

2.1.2 Fissioncouples 

The f i s s i o n  thermopile assemblies ( P h i l l i p s  Petroleum Co,) 
c o n s i s t  of t e n  uranium beads and t e n  bismuth beads, each 0.03 
i n .  i n  diameter.  The uranium beads enriched t o  93% U235 con- 
t a i n  a t o t a l  of approximately 0.15 g of uranium and 10% by 
weight of molybdenum. Each uranium and bismuth bead has a 
chromel-constantan thermocouple a t t ached ,  and t h e  thermo- 
couples a r e  connected i n  series. The beads, pot ted  i n  Al2O3, 
are enclosed i n  an aluminum tube about 2 i n .  i n  length  and 
0.25 i n .  i n  outer  diameter,  The four  u n i t s  were pot ted  i n  
polyurethane cy l inders  having thicknesses of between 150 and 
450 m i l s ,  

The f i s s i o n  thermopile assemblies f a i l e d  (open c i r c u i t )  
during t h e  i n i t i a l  thermal cyc l ing  o f  t h e  t es t  dewar. Post-  
i r r a d i a t i o n  measurements a t  room temperature a l s o  ind ica ted  
open c i r c u i t s  wi th in  the assemblies.  No f u r t h e r  information 
w a s  obtained on the  f i ss ioncouples ,  

2.2 T e s t  Conditions 

The level sensors  were mounted i n  a l i q u i d  hydrogen dewar 

The l e v e l  o f  hydrogen i n  t h e  dewar was var ied  from 
and i r r a d i a t e d  during f i v e  cycles  a t  several  r e a c t o r  power 
levels. 
t i m e  t o  t i m e  throughout t h e  t es t  i n  order  t o  check t h e  opera- 
ti-on of t h e  continuous probe and t o  change t h e  poin t  sensors  
from t h e  l i q u i d  t o  gaseous environment. After each i r r a d i a -  
t i o n  s t e p  t h e  dewar w a s  al-lowed t o  b o i l  dry  of l i q u i d  and w a r m  
t o  about 55'F. 
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The r e a c t o r  power leve l  was va r i ed  between 0.01 and 5 MW 
i n  order  t o  determine i f  r a d i a t i o n  rate  effects s i g n i f i c a n t l y  
a l t e r e d  t h e  sensor  outputs .  The t o t a l  r a d i a t i o n  exposure 
level w a s  s e l e c t e d  t o  exceed t h a t  pred ic ted  f o r  t e n  missions 
of a Reusable Nuclear S h u t t l e  powered by a 1500-MW NERVA. 

I n i t i a l  checkout of t h e  Sensors w a s  i n  l i q u i d  n i t rogen  
(2 cyc l e s ) .  I n  add i t i on  t o  the f i v e  i r r a d i a t i o n  cyc l e s ,  the 
sensors  were thermally  cycled i n  l i q u i d  hydrogen three times 
p r i o r  t o  i r r a d i a t i o n  and t w i c e  a f t e r  completion of t h e  i r r a d i a -  
t ion. 

2 .3  Measurements 

Data were obtained before  t h e  i r r a d i a t i o n  and durinq and 
following each i r r a d i a t i o n  cycle .  Data were obtained both 
wi th  and without t h e  r a d i a t i o n  f i e l d  by observing t h e  outputs  
when the sensors  w e r e  i n  l i q u i d  and i n  gaseous hydrogen. The 
leve l  i n d i c a t i o n  f o r  t h e  po in t  sensors  w a s  obtained by shu t-  
t i n g  o f f  t h e  l i q u i d  supply and allowing t h e  leve l  t o  drop be- 
low t h e  sensors '  pos i t i ons .  The leve l  i nd i ca t ion  of t h e  con- 
tinuous probe was compared t o  t h a t  of the po in t  sensors  dur ing 
t h e  boi l -of  f per iod.  

I n  add i t i on  t o  t h e  l i q u i d  and gas phase s i g n a l  ou tpu ts ,  
t he se  measurements were made: 

. Resis tance of the germanium sensor  ( S c i e n t i f i c  
Instruments)  dur ing each boi l- of f  cyc le  

e Capacitance, d i s s i p a t i o n  f a c t o r ,  and conduct iv i ty  
over t h e  frequency range of 1 t o  10 kHz f o r  t h e  
capaci tance sensors  

I. In su la t ion  r e s i s t a n c e  of the sensors  
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The gamma doses received by the liquid-level sensors 
during the irradiation were not measured. These doses were 
calculated by multiplying the neutron fluences by previously 
determined gamma-to-neutron ratios,  
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111. EQUIPMENT AND PROCEDURES 

3.1 Reactor F a c i l i t y  

The i r r a d i a t i o n  w a s  performed wi th  the 10-MW Ground T e s t  
Reactor (GTR), The below-grade tank f o r  t h i s  water-moderated 
thermal r e a c t o r  has .a c l o s e t - l i k e  s t r u c t u r e  b u i l t  i n t o  i t s  
nor th  w a l l .  The t e s t  assemblies are placed i n  t h e  i r r a d i a t i o n  
c e l l  adjacent  t o  t h e  three faces (designated nor th ,  eas t ,  and 
w e s t )  of the c l o s e t  i n t o  which t h e  r e a c t o r  i s  moved when an 
i r r a d i a t i o n  is  c a r r i e d  out.  The outer  f aces  of t h e  c l o s e t  are 
p la ted  with a 20-mil th ickness  of cadmium t o  a t t e n u a t e  thermal 
neutrons.  

The t e s t  assemblies are lowered i n t o  t h e i r  i r r a d i a t i o n  
p o s i t i o n s  by means of an overhead crane. Lines and cab les  are 
routed over t h e  nor th  w a l l  of t h e  i r r a d i a t i o n  c e l l  from t h e  
c o n t r o l  room or  the grade- level  ramp as requi red .  The cryogen 
manifold incorpora t ing  t h e  c o n t r o l  valves and purge f i x t u r e s  
was loca ted  on the nor th  ramp. Liquid hydrogen w a s  supplied 
t o  t h e  manifold from a t r a n s p o r t  t r a i l e r .  

3.2 T e s t  Assembly 

The t e s t  a r t i c les  were i r r a d i a t e d  i n  a c y l i n d r i c a l ,  
vacuum-jacketed dewar approximately 51  i n .  i n  he ight  and 
22 i n .  i n  outer  diameter,  The dewar had a capac i ty  of about 
60 g a l ,  The s i z e  of t h e  dewar w a s  such t h a t  it would con ta in  
t h e  continuous l i q u i d- l e v e l  probe (40 i n ,  i n  length)  and poin t  
sensors  loca ted  a t  t h r e e  levels.  This allowed one s e t  of 
sensors  t o  be pos i t ioned above t h e  l i q u i d  leve l ,  One s e t  w a s  
placed near  t h e  bottom of t h e  dewar and t h e  t h i r d  se t  w a s  near 

t h e  r e a c t o r  core ,  

in t he  i r r a d i a t i o n  c e l l ,  

l i d  contained penet ra t ions  f o r  hydrogen f i l l  
and exhaust- l i n e s ,  e l e c t r i c a l  feed-through connectors,  and 
s a f e t y  %terns. The sensor  support bracket  w a s  a l s o  a t tached 
t o  the  l i d .  

A l i q u i d- l e v e l  system w a s  used t o  continuously monitor 
and c o n t r o l  t h e  l i q u i d  level  i n  t h e  dewar. A probe c o n s i s t i n s  
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Figure 1 Experimental Setup 
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Figure 2 Probe and Point Sensor Assembly 
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Figure 3 Deta i l  o f  Sensor Assembly 
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Figure 4 Dewar Assembly 
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of f i v e  r e s i s t o r s  (p lus  a reference  r e s i s t o r )  and f ive  thermo- 
couples mounted i n  t h e  dewar (Figs. 1 and 2 )  was used i n  con- 
junct ion w i t h  an i n d i c a t o r  panel  and a B r i s t o l  c o n t r o l  u n i t .  

3 ,3  Measurement Equipment 

Instruments used i n  d a t a  t ak ing  were a Dymec 2010-D 
d ig i t a l -  da t a- acqu i s i t i on  system, a General Radio 1615-A 
capaci tance  br idge ,  a Hewlett-Packard 4329A r e s i s t ance  meter, 
a Space Craf t ,  Inc .  d i g i t a l  capacitance measuring system and 
a d i g i t a l  t o  analog conver te r ,  and t h e  necessary s t r i p - c h a r t  
recorders  and d i sp l ay  i n d i c a t o r s .  A block diagram of the  da ta  
system i s  shown i n  Figure 5 ,  

3.4 I r r a d i a t i o n  Procedure 

Following two thermal cycles  on t h e  ramp, t h e  t e s t  as-  
sembly w a s  pos i t ioned i n  t h e  i r r a d i a t i o n  c e l l  and a t h i r d  LH2 
f i l l  and l e a k  check w a s  completed. This checkout w a s  accorn- 
p l i shed  without  i n c i d e n t ,  except, as noted ea r l i e r ,  f o r  t h e  
f a i l u r e  of the f i s s ioncouples .  

The i r r a d i a t i o n  cycles  were scheduled f o r  and completed 
on f i v e  consecutive days. Data were taken a f t e r  each i r r a d i a -  
t i o n  s t e p  and t h e  sensors  were then allowed t o  w a r m  t o  ambient 
temperature before  the next LH2 f i l l .  
t a i ned  i ne r t ed  w i t h  helium a t  a l l  times between the  LH2 cycles .  

The dewar  w a s  main- 

Table 2 g ives  the i r r a d i a t i o n  schedule. Table 2 does not  
inc lude  several  s h o r t  dura t ion runs a t  lower power levels  which 
were made i n  order  t o  obta in  ra te  e f f e c t s  da ta  on t h e  l i q u i d-  
l e v e l  sensor .  These lower-power runs have been included i n  the 
computation of the megawatt hours of Table 2 and t h e  r ad i a t i on  
exposures given i n  Table 3 ,  

Table 2 
IRRADIATION SCHEDULE 

0 . 1  
1 .0  
1.0 
3.0 
5.0 

Energy Release 

0,05 0,05 
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SENSORS CONTROL UNITS INSTRUMENTATION 

Visual 
Display 

The rma 1 
Point 
(wire) 

Thermal 
Point 
(wire) 

Thermal 
Point 
(Germanium) 

Magne to  - 
s t r i c t  ive  

Capacitance 
Point 

Capacitance 
(Continuous) 

I c I Group 3 I 

Group 4 Conrac 

Group 5 

Coaxial 
Switches - 

Group 6 

S t r i p  
Chart 

Recorder 

Die lec t r ic  
Propert ies  
Equipment I 

. 

Figure 5 Block Diagram of  Data Acquisit ion System 
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Sensor I 
Continuous 
Capacitance : 

Max. 
Min , 

Upper 
Group 

Center 
Group 

Group 
Lower 

Table 3 

DOSIMETRY DATA 

Neutron Fluence 

1,74(15) 
3.24(14) 

1.21 (15) 

1.69(15) 

2.68 (14) 

3.59(13) 
6.67(12) 

2.48(13) 

3,48(13) 

5.51 (12) 

Gama Dose 
(erg/& (C) ) 

2,8(9) 
5.2(8) 

1*9(9) 

2.8(9) 

4,2(8) 

(erg/g (c) -MW€I] 

5.8(7) 
1,1(7) 

3.9(7) 

5.8(7) 

8,6(6) 
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3.5 T e s t  Procedure  

P r e i r r a d i a t i o n  c a l i b r a t i o n s  and o p e r a t i o n a l  checks were 
mpde on each s e n s o r  and t h e  l i q u i d - l e v e l  sys tem as neces sa ry  
t o  de te rmine  t h a t  it opere ted  p r o p e r l y  and t o  obtaLn b a s e l i n e  
d a t a .  
dewar with LH2 t o  a leve l  s l i g h t l y  above the s e n s o r  and t hen  
a l l o w i n s  t h e  l i q u i d  t o  b o i l  o f f  u n t i l  the s e n s o r  w a s  i n  t h e  
vapor above the l i q u i d .  The level  i n d i c a t e d  by the con t inuous  
probe w a s  compared with t h a t  i n d i c a t e d  by the  p o i n t  s e n s o r s  as 
t h e y  emerged from the l i q u i d .  

Data f o r  t h e  p o i n t  s e n s o r s  were ob t a ined  by f i l l i n g  t h e  

Data were t aken  p e r i o d i c a l l y  and/or  con t i nuous ly  d u r i n g  
the i r r a d i a t i o n  and p e r i o d i c a l l y  between i r r a d i a t i o n  c y c l e s .  
A f i l l  and b o i l - o f f  c y c l e  was conducted d u r i n g  and a f t e r  each 
i r r a d i a t i o n  t o  o b t a i n  d a t a  on the i n d i c a t i o n  of level change 
as the s e n s o r s  emerged from t h e  l i q u i d ,  o r  as t h e  l e n g t h  of 
s enso r  i n  l i q u i d  changed i n  the case of the probe.  

The p o s t i r r a d i a t i o n  procedure  w a s  s i m i l a r  t o  the p r e i r r a -  
d i a t i o n  procedure .  
were conducted.  The s e n s o r s  were then  removed from t h e  test  
assembly and v i s u a l l y  examined. 

Two f i l l  and b o i l - o f f  c y c l e s  w i t h  LH2 
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IV. RESULTS AND DISCUSSION 

4.1 Continuous Capacitance Sensor 

The continuous capaci tance sensor and i t s  assoc ia ted  
e l e c t r o n i c s  (The d i g i t a l  system and d i g i t a l  t o  analog conver- 
ter)  functioned throughout t h e  i r r a d i a t i o n  test but  erroneous 
outputs  were observed due t o  r a d i a t i o n  rate e f f e c t s .  
e l e c t r o n i c s  por t ion  of t h i s  l i qu id- l eve l  system was no t  irra- 
d ia t ed .  

The 

The r e s u l t s  w i l l  be discussed i n  subsect ions  r e l a t i n g  t o  
i r r a d i a t i o n  cyc les .  An i r r a d i a t i o n  cyc l e  cons i s ted  of a b a s i c  
reactor run (Table 2 )  and s h o r t e r  runs a t  lower r e a c t o r  power 
levels t o  tes t  for  r a d i a t i o n  rate e f f e c t s .  The effects w i l l  
be discussed i n  terms of megawatts of r e a c t o r  power. Gamma 
dose rates and neutron f luences  can be obtained from the  in for-  
mation i n  Tables 2 and 3. 

4.1.1 I r r a d i a t i o n  Cycle 1 

Cycle 1 cons i s ted  of a basic r eac to r  run a t  0.1 MW pre-  
ceded by a sho r t  run (4 minutes) a t  0.01 MW. 

No r a d i a t i o n  e f f e c t s  were observed during o r  a f t e r  t h i s  
t es t  cycle .  The i r r a d i a t i o n  por t ion  of t h i s  cyc le  w a s  con- 
ducted wi th  t h e  sensor  completely immersed i n  LH2. 

4.1.2 I r r a d i a t i o n  Cycle 2 

Cycle 2 cons i s ted  of a bas i c  r eac to r  run a t  1.0 MW pre-  
ceded by s h o r t  runs a t  0.01 and 0.1 MW. 

No r a d i a t i o n  e f f e c t s  were observed during t h e  0.01 and 
0.1 runs. A small effect w a s  observed when t h e  power level 
w a s  increased t o  1.0 MW. The f i n e  vo l tage  output of t h e  
l i qu id- l eve l  e l e c t r o n i c s  gave an erroneous l i q u i d  level i n-  
crease of about 1 inch and then leveled out .  The sensor  w a s  
almost t o t a l l y  immersed i n  LH2 f o r  t h i s  por t ion  of t h e  cycle.  

During t h e  1 MW i r r a d i a t i o n  the  LH2 w a s  allowed t o  b o i l  
off  t o  reduce t h e  level about 6 inches while t h e  f i n e  and 
coarse  vol tage outputs  w e r e  recorded and monitored. The sen- 
s o r  and e l e c t r o n i c s  responded as designed t o  t he  l i q u i d  level 
change, though t h e  abso lu t e  value  of the level w a s  i n  e r r o r  
by the  i n i t i a l  o f f s e t .  
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When t h e  r e a c t o r  w a s  r a p i d l y  shutdown (scrammed) a t  t h e  
end of t h e  r u n ,  a pronounced effect was observed.  The f i n e  
v o l t a g e  ou tpu t  went i n t o  r a p i d  o s c i l l a t i o n  f o r  about  15 seconds 
and the c o a r s e  v o l t a g e  ou tpu t  took  a s t e p  f u n c t i o n  d e c r e a s e  i n  
v o l t a g e  of about  10 mV i n d i c a t i n g  a n  er roneous  immediate de-  
crease i n  l i q u i d  level  of about  10 inches .  This ef fec t  was 
t r a n s i e n t  and the p o s t i r r a d i a t i o n  b o i l - o f f  and f i l l  c y c l e  d a t a  
i n d i c a t e d  no  permanent r a d i a t i o n  e f f e c t .  The r e s u l t s  of t h i s  
* i r r a d i a t i o n  c y c l e  showed t h a t  t h e  t r a n s i e n t  r a d i a t i o n  e f f e c t  
w a s  more pronounced i f  the s e n s o r  was a p p r e c i a b l y  o u t  of 
l i q u i d .  

4 .1 .3  I r r a d i a t i o n  C y c l e  3 

Cycle 3 c o n s i s t e d  of t h r e e  r e a c t o r  runs  a t  1 Mw, two a t  
0.1 Mw, and one a t  0.01 MW. 

A small  p e r t u r b a t i o n  of t h e  f i n e  and c o a r s e  v o l t a g e  ou t-  
p u t s  w a s  observed as t h e  r e a c t o r ,  o p e r a t i n g  a t  0.01 MW, w a s  
t r a v e r s e d  i n t o  t h e  i r r a d i a t i o n  p o s i t i o n .  The p e r t u r b a t i o n  was 
temporary,  about  one minute,  and c o n s i s t e d  of what appeared t o  
be 25 mV of n o i s e  on t h e  f i n e  ou tpu t  s i g n a l ,  and 5 mV of n o i s e  
on t h e  c o a r s e  ou tpu t  s i g n a l .  The s e n s o r  was w i t h i n  4 i nches  
of t h e  f u l l  mark (40- inch level)  and t h e  l i q u i d  level system 
con t inued  t o  c o r r e c t l y  t r a c k  t h e  l i q u i d  b o i l o f f  a f t e r  t h e  p e r-  
t u r b a t i o n .  

A s  t h e  r e a c t o r  power leve l  v7as i n c r e a s e d  t o  1 MW ( sensor  
s t i l l  e lmost  f u l l  o f  l i q u i d )  an er roneous  i n d i c a t i o n  of about  
0 .5- inch  i n c r e a s e  i n  l iquf-d l eve l  x a 7 a s  observed on t h e  f i n e  
v o l t a g e  o u t p u t ,  and as t h e  LH2 l e v e l  w a s  lowered t o  t h e  21- 
i n c h  leve l ,  t h e  f i n e  and c o a r s e  v o l t a g e  o u t p u t s  i n d i c a t e d  a 
1-owerlng on ly  t o  t h e  29- inch l e v e l .  When t h e  r e a c t o r  was 
r e t r a c t e d  from t h e  i r r a d i a t i o n  p o s i t i o n  ( i . e . ,  away from t h e  
i r r a d i a t i o n  c e l l )  t h e  f i n e  ou tpu t  recorded f i v e  sawtooth  o u t -  
p u t s ,  and t h e  c o a r s e  o u t p u t  f i v e  s t e p  f u n c t i o n s  i n  a t i m e  
i n t e r v a l  of about  1 minute.  Th i s  response  i n d i c a t e d  an 
er roneous  r a p i d  lower ing  of t h e  LH2 level  and recovery  of t h e  
r a d i a t i o n  rate  e f f e c t .  A f t e r  complet ion of t h e  r e a c t o r  
r e t r a c t i o n  ( i . e . ,  removal of t h e  r a d i a t i o n  f i e l d )  t h e  coarse 
ou tpu t  v o l t a g e  was c o r r e c t .  

The s e n s o r  w a s  a g a i n  exposed t o  0.1-  and 1-MW r a d i a t i o n  
rates and e r roneous  l i q u i d  level  i n d i c a t i o n s  of i n c r e a s e s  of 
2 inches  and then  5 inches  were observed.  Again recovery  w a s  
observed upon r e a c t o r  r e t r a c t i o n .  Another 1- MW run i n d i c a t e d  
t h e  same r e s u l t s ,  i . e . ,  5 sawtooths  and s t e p  f u n c t i o n s  from 
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f i n e  and coarse outputs .  
t o  64 mV i n  a period of about 100 seconds, an erroneous indica-  
t i o n  of a 9-inch l i q u i d  level increase.  

The coarse  output  changed from 46 mV 

During t h i s  1-MW run t h e  l i q u i d  leve l  was increased t o  
25 inches.  The l i q u i d- l e v e l  system tracked the  level inc rease  
bu t  the abso lu te  values were i n  e r r o r .  The coarse  vo l t age  
output ind ica ted  32 inches of l i q u i d .  The amount of e r r o r  
decreased as the l i q u i d  l eve l  increased,  The e r r o r  was re- 
duced t o  about 3 inches as the sensor  was nea r ly  f u l l  of 
l i q u i d .  A l s o ,  a smaller t r a n s i e n t  e f f e c t  was observed, the  
equivalent  of t h e  3-inch e r r o r ,  when t h e  r e a c t o r  w a s  scrammed. 
Again, no permanent r a d i a t i o n  e f f e c t  w a s  observed dur ing  post  
cycle 3 t e s t i n g .  

4.2.4 I r r a d i a t i o n  Cycle 4 

Cycle 4 cons i s t ed  of a b a s i c  r e a c t o r  run a t  3 MW preceded 
by runs a t  0.01 and 0.10 M4 and followed by a run a t  0.01 MCJ. 

No r a d i a t i o n  e f fec t  was observed as t h e  r e a c t o r ,  operat-  
ing  a t  0.01 MW, was t raversed  i n t o  t h e  i r r a d i a t i o n  pos i t ion .  
The LN2 w a s  a t  the 25-inch level  of the sensor .  A s  t h e  r e a c t o r  
power level  was increased t o  0.10 MW t h e  f i n e  vo l t age  output 
increased from 25 mV t o  about 90 mV, which i s  a false indica-  
t i o n  of l i q u i d  l e v e l  inc rease  of about 1.5 inches.  Af te r  t h e  
r e a c t o r  power was l e v e l  a t  0.10 MW, t h e  f i n e  and coarse  v o l t -  
age outputs  t racked t h e  lgquid level  increase  c o r r e c t l y  as t h e  
dewar w a s  being f i l l e d .  

A very  pronounced effect  w a s  again observed when t h e  
reactor power w a s  increased t o  3 IN. Six sawtooth and s t e p  
funct ions  were observed from t h e  f i n e  and coarse outputs  i n d i-  
c a t i n g  an erroneous rapid  f i l l  from t h e  22-inch t o  t h e  32-inch 
level .  The l i q u i d- l e v e l  system responded t o  leve l  changes bu t  
t h e  values were i n  e r r o r .  A t  the 24-inch level t h e  system 
indica ted  a level  of 33 inches.  As discussed previously,  t h e  
amount of e r r o r  was a funct ion  of l i q u i d  leve l  i n  a d d i t i o n  t o  
reactor power. The amount of e r r o r  decreased from about 10 
inches t o  e s s e n t i a l l y  ze ro  as t h e  sensor  became t o t a l l y  i m -  
mersed i n  l i q u i d .  Rate effects and recovery of t h e  accuracy 
of the level  system response was observed when the r e a c t o r  - 
was r e t r a c t e d  from the i r r a d i a t i o n  pos i t ion .  
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4.1.5 I r r a d i a t i o n  Cycle 5 

Cycle 5 cons i s t ed  of a b a s i c  reactor run a t  5 MW preceded 
and followed by lower power level  runs.  The r a d i a t i o n  effects  
observed were very  Simi lar  t o  those  observed during cyc le  4, 
t h a t  i s ,  no e f f e c t  a t  0.01 MW and an erroneous f i l l  i n d i c a t i o n  
as t h e  r e a c t o r  power w a s  incr.eased t o  5 MW. Before the power 
increase ,  LH2 w a s  a t  the 30-inch level ;  immediately a f te r  the 
inc rease  t h e  ind ica ted  level  was 37 inches.  This e r r o r  w a s  
less than  t h e  3-MW e r r o r ;  however t h e  l i q u i d  level  w a s  s i g n i f i -  
c a n t l y  higher (30 inches ins tead  of 22 inches) .  As t h e  l i q u i d  
level  w a s  decreased t o  t h e  24-inch leve l ,  t h e  e r r o r  increased 
from 7 inches t o  11 inches.  As t h e  dewar w a s . f i l l e d  w i t h  LH2 
the error was reduced u n t i l  t he  level ind ica t ion  w a s  1 inch 
too  high.  

4.1.6 Summary of Radiet ion Effects  on the  Continuous 
CaDacitance Svstem 

The capaci tance system used as a continuous l i q u i d- l e v e l  
measuring system exh ib i t ed  a h igh degree o f  r a d i a t i o n  r a t e  
s e n s i t i v i t y  under condi t ions  of high r e a c t o r  power level  
(1 MW o r  g r e a t e r )  combined wi th  a l i q u i d  l e v e l  s e v e r a l  inches 
below the f u l l  l eve l .  No permanent r a d i a t i o n  effects were 
observed. 

The e r r o r  i n  l i q u i d  level ind ica t ion  is a t t r i b u t e d  t o  an 
apparent inc rease  i n  capaci tance a s  a d d i t i o n a l  charge carriers 
a r e  produ,ced by t h e  h igh i n t e n s i t y  r a d i a t i o n  f i e l d s  (pr imar i ly  
gamma rad ia t ion) .  The l i q u i d- l e v e l  ind ica t ion  of t h e  sensor  
is  r e l a t e d  d i r e c t l y  t o  the  capaci tance e x i s t i n g  between t h e  
two e lec t rodes  of t h e  sensor;  the re fo re  as t h e  capaci tance 
increases  due t o  t h e  r a d i a t i o n  f i e l d ,  t h e  sensor  system res- 
ponds as though t h e  l i q u i d  leve l  w e r e  increas ing ,  and con- 
v e r s e l y  when the r a d i a t i o n  f i e l d  i s  removed the  sensor  w i l l  
i n d i c a t e  an erroneous lowering of t h e  l i q u i d  l e v e l ,  Dielec- 
t r i c  proper ty  measurements, presented i n  t h e  following sub- 
s e c t i o n ,  gave evidence of t h e  r a d i a t i o n  rate  effect  on capaci-  
tance.  

4.2 Dielectric Proper t i e s  of the  Continuous Probe 

Dielectric proper ty  measurements of t h e  continuous l i q u i d-  
leve l  system were made under condi t ions  of s e v e r a l  r a d i a t i o n  
rates and l i q u i d  l e v e l s  as  shown i n  Table 4 .  Measurements of 
capaci tance and d i s s i p a t i o n  factor  (a t  1 kHz and 10 kHz), and 
r e s i s t a n c e  of t h e  system were made, The r e s u l t s  of t h e  
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measurements show s i g n i f i c a n t  r a d i a t i o n  ra te  e f f e c t s .  In-  
creases i n  capaci tance and d i s s i p a t i o n  f a c t o r  and decreases 
i n  r e s i s t a n c e  were observed. The magnitude of t h e  r a d i a t i o n  
ra te  e f fec ts  was dependant upon t h e  r e a c t o r  power l eve l ,  t he  
l i q u i d  leve l ,  and t h e  o s c i l l a t o r  t e s t  frequency. The l a r g e s t  
e f f e c t s  were observed a t  t h e  h igher  power levels w i th  low 
l i q u i d  levels and low o s c i l l a t o r  frequency (1 kHz). It can be 
seen from Table 4 t h a t  a t  a constant  l i q u i d  level  an apparent 
inc rease  i n  capaci tance w a s  observed and r e s u l t e d  i n  erroneous 
outputs  of the  l i q u i d - l e v e l  system a s  discussed i n  Sect ion 
4 . 1 .  The observed e f f e c t s  are bel ieved t o  be caused by t h e  
genera t ion  of charge car r iers ,  p r imar i ly  by the  gamma rad ia-  
t i o n .  Mobil i ty  s e n s i t i v i t y  can be seen by comparison of the 
1-kHz and 10-kHz measurements. 

4 . 3  Thermal (Point)  Sensors - Acoustica Associates Model 
STS 505  

The Prcoustica thermal poin t  sensors  w e r e  not a f f e c t e d  b y  
t h e  r a d i a t i o n  exposure of t h i s  tes t .  However, t h e  assoc ia ted  
c o n t r o l  u n i t s  (not i r r a d i a t e d )  f a i l e d  t o  respond t o  t h e  re-  
s i s t a n c e  change of the sensors ;  t h e r e f o r e ,  r e s i s t a n c e  measure- 
ments were made throughout t h e  t e s t  ins tead  of monitoring 
output vol tages  from t h e  c o n t r o l  u n i t s .  

Typical  test  da ta  i s  shown i n  Table 5 .  The r e s i s t a n c e  of 
t h e  sensors  decreased about 100 ohms, from around 106 ohms t o  
approximately 6 ohms,with a decrease i n  temperature from 5 5 -  
60°F t o  t h a t  of l i q u i d  hydrogen ( -423OF).  Some v a r i a t i o n s  i n  
r e s i s t a n c e  values as  seen i n  Table 5 are due t o  temperature 
v a r i a t i o n s  

4 . 4  Thermal (Point)  Sensor - United Control  Model.2641 

The United Control  thermal po in t  sensors  were unaffected 
by the r a d i a t i o n  exposure. Two of t h e  c o n t r o l  u n i t s  exh ib i t ed  
temporary malfunction a t  t h e  end oE i r r a d i a t i o n  Cycle 5. 

4 . 5  Thermal (Point)  Sensor - S c i e n t i f i c  Instruments Model 3 

The S c i e n t i f i c  Instruments germanium poin t  sensors  were 
opera t iona l  throughout t h e  t e s t .  They indica ted  a change i n  
r e s i s t a n c e  as a change occurred i n  t h e  temperature of t h e  
environment. 

S i g n i f i c a n t  temporary r a d i a t i o n  effects were observed. 
The sensor  exposed t o  t h e  h ighes t  neutron f luence  increased 
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s i g n i f i c a n t l y  i n  r e s i s t a n c e  while  i n  LH2 during Cycles 4 and 
5 ,  the h ighes t  f luence  cycles .  Recovery from t h i s  r a d i a t i o n  
e f f ec t  (annealing) was observed dur ing measurements made a f t e r  
t h e  temperature of  t h e  sensors  had been increased.  

Some r e s i s t a n c e  measurements and assoc ia ted  parameters 
a re  shown i n  Table 6 f o r  sensor  SI-2 which w a s  located a t  t h e  
center of t h e  dewar. 

4 . 6  Magnetostri-ctive (Point) Sensor - Conrac Corp. Model 
UP1 004 s - 5 

The Conrac sensor  elements were opera t iona l  throughout 
the t es t .  The c o n t r o l  u n i t  fo r  one of the sensors  had t o  be 
ad jus ted  occas iona l ly  t o  ob ta in  the c o r r e c t  vo l tage  outputs  i n  
and/or out  of l i q u i d .  

4 . 7  Capacitance (Point)  Sensor - Transonics Corp. Model L4447 

The Transonic capaci tance po in t  sensor  systems were 
opera t iona l  through i r r a d i a t i o n  Cycle 3 .  Operation of t h e  
systems during i r r a d i a t i o n  a t  3 and 5 MI4 was i n t e r m i t t e n t  
(control  u n i t  vo l t age  outputs)  and dependent on t h e  l i q u i d  
leve l  i n  a manner simi’lar t o  t h e  da t a  obtained from the con- 
tinuous capaci tance sensor  system (Secs. 4 .1  and 4 . 2 ) .  There 
was no phys ica l  r a d i a t i o n  damage t o  the capaci tance sensors  
and they  continued t o  sense  i n  and out of l i q u i d  environment 
throughout the t e s t ;  however, as t h e  l i q u i d  l e v e l  w a s  appreci-  
a b l y  lowered beneath a sensor  (at  high r a d i a t i o n  r a t e s ) ,  
i nd i ca t ions  of l i q u i d  s t a t e  were i n t e r m i t t e n t l y  observed. 

The r e s u l t s  of capaci tance,  d i s s i p a t i o n  f a c t o r ,  and re- 
s i s t a n c e  measurements t h a t  were made agreed with  the continu-  
ous capaci tance sensor  measurements wi th  regard t o  r a d i a t i o n  
ra te  e f f ec t s .  Increases  i n  capaci tance and d i s s i p a t i o n  f a c t o r  
and decreases i n  r e s i s t a n c e  were observed. 

4.8  Conclusions 

The continuous capaci tance l i q u i d- l e v e l  system began t o  
have apprec iab le  e r r o r  i n  the output a t  a gamma dose r a te  of 
about 3x107 ergs/gm(C)-h. 
out of the l i q u i d  could be expected t o  show s i g n i f i c a n t  e r r o r  
a t  lower dose rates s i n c e  t h e  e r r o r  i s  a funct ion of l ength  
out  of l i q u i d  as w e l l  as of r a d i a t i o n  rate.  Point  sensors  of 
capaci tance type  show changes i n  p rope r t i e s  similar t o  tha t  
exhib i ted  by the probe while  cont inuing t o  i nd i ca t e  the 

A longer probe w i t h  a greater length  
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presence or absence of liquid; some spurious liquid indica- 
tion were observed when the sensors were out of liquid. 

The thermal sensors having wire elements were satisfac- 
tory throughout the test as were the magnetostrictive sensors. 
The thermal point sensors having germanium elements exhibit a 
radiation effect that is a function of the neutron exposure. 
The increased resistance of the germanium elements can be 
annealed by raising the temperature. 
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TEST OF VALVE -SEAL MATERIALS 
FZK-387 
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SUMMARY 

A test has been performed t o  eva lua te  t h e  combined e f f e c t s  
of r e a c t o r  r a d i a t i o n  and l i q u i d  hydrogen on valve-seal materials 
of p o t e n t i a l  usefulness  on a nuclear-powered space vehic le .  The 
materials w e r e  t e s t e d  under simulated use condi t ions as components 
of two l i q u i d  hydrogen valves. 
during t h e  i r r a d i a t i o n  and da ta  cyc les  and then warmed t o  ambient 
temperature between cycles .  Leakage rates and opening and c los ing  
t i m e s  were obtained before  and a f t e r  each of f i v e  i r r a d i a t i o n  s t e p s  
a t  power levels from 0.1 t o  5 MW w i t h  t h e  Ground T e s t  Reactor. 
Tota l  r a d i a t i o n  doses w e r e  s u f f i c i e n t  t o  exceed by an order  of 
magnitude the  predic ted  l e v e l  a t  the  shutoff  valve loca t ion  i n  t en  
missions of a Reuseable Nuclear S h u t t l e  w i t h  a 1500-MW NERVA. 

The valves w e r e  f i l l e d  w i t h  LH2 

One of t h e  valves w a s  a 17- in. S- IC s t a g e  LOX shutoff  valve 
which had been modified, under NASA c o n t r a c t ,  by t h e  Whittaker 
Corporation f o r  l i q u i d  hydrogen s e r v i c e  i n  a r a d i a t i o n  environment. 
The modif icat ion cons i s t ed  p r i n c i p a l l y  of rep lac ing  r a d i a t i o n  
s e n s i t i v e  organic  materials w i t h  more r a d i a t i o n  r e s i s t a n t  materials , 
some of which were developed f o r  t h i s  use by Whittaker. 
placement materials used as seals, gaskets ,  O-rings, etc. w e r e  
Kynar, a composite of Kynar, Teflon,  and f i b e r  g l a s s ,  asbes tos ,  
and a polyurethane-base material (Narmco 7343). 

The re- 

The second valve w a s  an of f- the- shel f  S-I1 s t a g e  LOX and LH2 
f i l l  valve (V7-480450, 8- in. l i n e  s i z e )  manufactured by North 
American Rockwell. The organic materials used i n  t h i s  valve as 
lipseals,  seals, bear ings,  packing, etc. are Mylar, Teflon FEE! 
and TEF, Kel-F, s y n t h e t i c  rubber,  Nylon, Viton A,  polyurethane,  
and a Teflon and asbestos  composite. 

Af ter  a o t a l  exposure (maximum) of 3.5 x lo9 ergs/gm(C) 
and 4.2 x 10" n/cm2 (E >1.0 MeV), performance of t h e  17-in. valve 
w a s  s t i l l  s a t i s f a c t o r y  w i t h  regard t o  leakage. 
s tayed w e l l  w i th in  s p e c i f i c a t i o n  and s h a f t - s e a l  and f l a n g e - s t a t i c -  
seal leakage w a s  e s s e n t i a l l y  zero.  
t h e  a c t u a t o r  vent  leakage w a s  above s p e c i f i c a t i o n s  but  it w a s  zero 
a t  t h e  end of  t h e  test. 
occurred as t h e  test progressed and i n  one ins tance  t h e  valve 

Mainseal leakage 

I n  t h r e e  of e igh t  da ta  cycles  

Some increase  i n  valve opening time 
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s tuck  c losed  but opened on t h e  second t r y .  
test t h e  opening time w a s  3 t o  5 seconds as compared t o  t h e  
s p e c i f i c a t i o n  of 2 seconds. The c los ing  t i m e  w a s  c o n s i s t e n t l y  
less than t h e  1 second s p e c i f i c a t i o n ,  i n  three ins tances  being 
0.2 second, 

A t  t h e  end of  t h e  

The S-16 s t a g e  f i l l  va lve  received a t o t a l  exposure (maximum) 
of 1.1 x 10 ergs/gm(C) and 7.2 x n/cm2 (E>1 .0  MeV). Its 
performance s tayed  wi th in  s p e c i f i c a t i o n  on a l l  measurements except 
opening and c los ing  t i m e s .  I n  t h r e e  of seven openings, t h e  t i m e  
w a s  less than t h e  s p e c i f i e d  5 + 2 seconds; i n  s i x  of seven c los ings ,  
t h e  t i m e  w a s  less than spec i f iFa t ion  (5 + 2 sec) .  Other measure- 
ments included ac tua to r  pressure  decay (Tncreased somewhat as t h e  
test progressed) and leakage rates from t h e  ac tua to r  Por t  C (zero) ,  
a c t u a t o r  p i s t o n  seal (zero) ,  a c t u a t o r  rod seal (zero) ,  i d l e r  s h a f t  
seal (zero) ,  d r i v e  s h a f t  seal (ze ro ) ,  and la tch cover p l a t e  (zero  
w i t h  valve c losed) .  
one cyc le  t o  t h e  next  but  always remained far below t h e  s p e c i f i -  
ca t ion .  

The mainseal leakage va r i ed  somewhat from 

Af te r  t h e  i r r a d i a t i o n  test ,  both valves  w e r e  disassembled 
f o r  inspect ion.  
any s igns  of damage, 
good condi t ion ,  

V i s u a l  inspec t ion  of t h e  seals f a i l e d  t o  d i s c l o s e  
A l l  seals w e r e  i n t a c t  and appeared t o  be i n  

5 1  



I. INTRODUCTION 

An i r r a d i a t i o n  tes t  has been performed f o r  t h e  purpose of  
eva lua t ing  organic seal materials f o r  p o t e n t i a l  use on a nuclear-  
powered veh ic le ,  
materials w i l l  be  i n  valves of t h e  p rope l l an t  feed  system. Not 
only do these  seals perform v i t a l  funct ions  i n  t h e  proper opera- 
t i o n  of t h e  system, but the  valves-must of necess i ty  be located 
near the  engine and the re fo re  i n  r e l a t i v e l y  high r a d i a t i o n  f i e l d s .  
Since some of t h e  b e s t  organic materials f o r  use i n  l i q u i d  hydro- 
gen systems are among those most s u s c e p t i b l e  t o  r a d i a t i o n  damage, 
it has been evident  f o r  some t i m e  t h a t  more r a d i a t i o n  r e s i s t a n t  
materials. would probably be needed and t h a t  d e f i n i t i v e  and realis- 
t i c  t e s t i n g  would be required.  
taken i n  t h i s  regard.  

One of t h e  m o s t  cr i t ical  app l i ca t ions  of organic  

Two u s e f u l  s t e p s  have now been 

Toward t h e  development of r a d i a t i o n  r e s i s t a n t  seal materials, 

I n  test-  
t h e  Whittaker Corporation has  modified a 17- in. S-IC LOX shutof f  
valve f o r  use with l i q u i d  hydrogen i n  a r a d i a t i o n  f i e l d .  
ing,  General Dynamics has evaluated t h i s  modified valve and an 
unmodified S-11 s t a g e  LH2 f i l l  valve i n  t h e  combined environment 
of l i q u i d  hydrogen and r e a c t o r  r ad ia t ion .  The Whittaker and 
North American Rockwell va lves ,  which served as test veh ic le s  
f o r  t h e  seal materials, were i r r a d i a t e d  i n  seve ra l  s t e p s  and 
ac tua ted ,  l eak  checked, and thermally  cycled a f t e r  each i r r a d i a -  
t ion .  The t o t a l  r a d i a t i o n  dose w a s  s e l e c t e d  t o  exceed t h e  pre-  
d ic ted  l i f e t i m e  dose i n  an app l i ca t ion  on t h e  Reuseable Nuclear 
S h u t t l e ,  

This work w a s  conducted a t  t h e  Nuclear Aerospace Research 
F a c i l i t y  (NARF') operated by t h e  For t  Worth operat ion of t h e  Convair 
Aerospace Division of General Dynamics f o r  t h e  George C. Marshall  
Space F l i g h t  Center of t h e  National Aeronautics and Space Adminis- 
t r a t i o n  under Contract  NAS8-18024. Under Contract  NAS8-18024, t h e  
For t  Worth operat ion has performed numerous r a d i a t i o n  e f f e c t s  ex- 
periments on organic  materials and thermal insu la t ions  as a p a r t  
of t h e  technology program supporting t h e  development of t h e  
nuclear  rocket  vehic le .  
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11, DESCRIPTION OF TEST 

2 . 1  T e s t  Articles 

2 . 1 . 1  17-Inch Valve 

The 17- in. valve (Whittaker Corp, P/N 138025) i s  of spr ing-  
opened, pneumatically-closed, sphe r i ca l  r o t a r y  type. It w a s  
designed f o r  and used as t h e  emergency shutoff  valve between t h e  
l i q u i d  oxygen tank and t h e  engine turbopump of t h e  S-IC s t a g e  of 
t h e  Saturn V veh ic l e ,  The valve is  operated by means of a pneu- 
matic a c t u a t o r  which c l o s e s  t h e  valve visor (ga te )  when pneumatic 
p ressure  i s  appl ied  t o  t h e  ac tua to r ,  and opens t h e  visor by means 
of an  i n t e r n a l  spr ing  when pressure  i s  removed. 
operates  t o  retract  and advance a v i s o r  seal t h a t  is  forced aga ins t  
t h e  inner  por t ion  of t h e  v i s o r  by means of a metallic bellows; 
t h i s  completes t h e  s e a l i n g  f e a t u r e s  of the valve. 
c r i p t i o n  along with drawings, p a r t s  l i s ts ,  checkout procedures, 
etc.  may be found i n  t h e  maintenance manual (Ref. 1). 

The ac tua to r  also 

A complete des- 

The 17- in. valve i r r a d i a t e d  and t e s t e d  by General Dynamics 
(P/N 138025A) had been modified by t h e  Whittaker Corporation 
under Contracts  NAS8-20784 and NAS8-20955 f o r  l i q u i d  hydrogen 
service i n  a r a d i a t i o n  environment. 
t o  serve as a veh ic l e  f o r  t e s t i n g  r ad i a t i on- res i s t an t  seal materials 
i n  a combined r a d i a t i o n  and l i q u i d  hydrogen environment. 
t a i l s  of  t h e  Whittaker programs on seal-material development and 
modificat ion of t h e  valve are described i n  References 2 and 3 ,  

It w a s  s p e c i f i c a l l y  intended 

The de- 

h i t t a k e r  modificat ions cons i s ted  of rep lac ing  e x i s t i n g  
s e a l s ,  i n s u l a t o r s ,  l u b r i c a n t s ,  and nonmetallic components with 

to conform t o  t h e  e x i s t i n g  valve geometry envelope, 
replaced and t h e  replacement materials a r e -g iven  i n  Table 1, 

i on- re s i s t an t  components, A l l  replacement components had 
The components 

o r t h  American Roc V 7 ~ 4 8 0 4 5 ~ ~  is  a 
gate va lve  of 8-fne l i n e  s i z e  used for both 

he  valve i s  spr ing  opened n t h e  S-I1 s t age ,  
a w a l  of a l a t c h  p in ,  Table 2 l i s ts  t h e  com- 
i c  materials e 
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2 .2  T e s t  Conditions 

Both valves were i r r a d i a t e d  i n  f i v e  s t e p s  while  f i l l e d  with 
l i q u i d  hydrogen. Af ter  each i r r a d i a t i o n ,  a da ta  c y c l e  w a s  run 
and t h e  valves w e r e  purged of hydrogen and allowed t o  warm t o  
ambient temperature (approx. 50°F). The i r r a d i a t i o n  s t e p s  w e r e  
a t  nominal r e a c t o r  power l e v e l s  of 0.1, 1 .0,  1.0, 3.0, and 5.0 MW 
each f o r  a dura t ion  t o  g ive  t h e  des i r ed  in teg ra ted  gamma dose. 
The t o t a l  r e a c t o r  opera t ing  t i m e  w a s  19 hours and t h e  approximate 
t o t a l  t i m e  t h e  valves contained l i q u i d  hydrogen w a s  31 hours. 
Including p r e i r r a d i a t i o n  checkout, t h e  valves were subjec ted  t o  
11 LH2 cycles .  

2.3 Measurements 

The e f f e c t  of  t h e  appl ied  environments on t h e  a b i l i t y  of t h e  
valve- seal  materials t o  continue t o  perform t h e i r  funct ion  a t  LH2 
temperatures w a s  determined from measurements of t h e  leakage rates 
a t  c e r t a i n  po in t s  on t h a  va lves ,  from measurements of  opening and 
c los ing  t i m e s ,  and from pressure  decay measurements ( f i l l  valve 
only) ,  
following t h e  i r r a d i a t i o n s .  

These measurements w e r e  made immediately preceding and 

Temperatures w e r e  measured a t  three loca t ions  on t h e  ou t s ide  
of each valve body. 
by use of coba l t  g l a s s  and f o i l s ,  r e spec t ive ly ,  Liquid levels 
wi th in  t h e  valves and the  a t tached  s tandpipes  were measured and 
con t ro l l ed  by use of r e s i s t o r  probes and t h e  automatic f low-control  
system. 

Gamma doses and neutron f luences w e r e  measured 

2.4 

Neutron f luence measurements w e r e  made a t  var ious  loca t ions  on 
each va lve  by use of n i c k e l ,  s u l f u r ,  and phosphorous f o i l s .  Gamma 

l oca t ions  using 
remove these  d 

he  dosimet are given i n  a b l e  4 of Sect ion 

58 



111. EQUIPMENT AND PROCEDURES 

3 J  Reactor F a c i l i t y  

The i r r a d i a t i o n  w a s  performed w i t h  t h e  1O-PIW Ground T e s t  
The below-grade tank f o r  t h i s  water-moderated 

The test assemblies are placed i n  t h e  i r r a d i a t i o n  ce l l  

Reactor (GTR). 
thermal r e a c t o r  has a c l o s e t - l i k e  s t r u c t u r e  b u i l t  i n t o  i t s  nor th  
w a l l .  
adjacent  t o  t h e  t h r e e  faces (d 
of t h e  c l o s e t  i n t o  which t h e  r ved when an i r r a d i a t i o n  
i s  c a r r i e d  ou t .  The o u t e r  faces  of t h  o s e t  are p l a t e d  with a 
20-mil thickness  of  cadmium to  a t t e n u a t e  thermal neutrons.  

r t h ,  east, and w e s t )  

The test assemblies are lowered i n t o  t h e i r  i r r a d i a t i o n  posi-  
t i o n s  by means of an overhead crane.  Lines and cables  are routed 
over t h e  nor th  w a l l  of t h e  i r r a d i a t i o n  c e l l  from t h e  c o n t r o l  room 
o r  t h e  grade- level  ramp as requi red .  The cryogen manifold in-  
corporat ing t h e  c o n t r o l  valves and purge f i x t u r e s  w a s  loca ted  on 
t h e  north ramp. 
from a t r anspor t  trailer. 

Liquid hydrogen w a s  suppl ied t o  t h e  manifold 

3 .2  T e s t  Assemblies 

Since t h e  valves  w e r e  t o  be i r r a d i a t e d  while f i l l e d  with LH2, 
they were assembled w i t h  a b l ind  f lange bol ted  on t h e  downstream 
valve f l ange  and a vacuum-jacketed s tandpipe bol ted  on t h e  upstream 
valve f lange.  The s tandpipe assured t h a t  t h e  valves  would be com- 
p l e t e l y  f u l l  of LH2 and a l s o  provided a r e s e r v o i r  t o  maintain an 
adequate LH2 l e v e l  when flow w a s  s h u t  o f f  f o r  t h e  leakage measure- 
ments. To minimize t h e  p o s s i b i l i t y  of hydrogen leakage i n t o  t h e  
i r r a d i a t i o n  c e l l ,  each valve assembly w a s  t o t a l l y  enclosed i n  a 
c y l i n d r i c a l  conta iner  (shroud) which w a s  con t inua l ly  purged w i t h  
helium. The 17-in,-valve assembly a t tached  t o  t h e  shroud cover 
i s  shown i n  Figure 1. The l a r g e s t  f l e x i b l e  l i n e  is a 4- in.  gas 
exhaust and t h e  smaller l i n e  i s  t h e  1.5-in. shroud exhaust. 

.5-in, f l e x i b l e  LH2 supply l i n e  s used. Smal le r  copper 1 
ere used f o r  ac tua t ion  pressure  d leakage measurements. 

A similar arrangement w a s  used f o r  t h e  f i l l  valve, The un- 
mounted va lve  is  s h  

, shows t h e  17-in.-valve 
4 os i t ioned  a t  t h e  w e s  

i n  Figure 2 
face of  t h e  
assembly on 

and 
GTR 
t h e  
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t h e  test assembly is  shown 
i n  Figure 3 ,  Figure 4 
work platform above and 



Figure 1 17-Inch-Valve and Standpipe Assembly 
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j u s t  no r th  of t h e  i r r a d i a t i o n  cel l .  
Figure 4 contained t h e  l i q u i d  l e v e l -s e n s o r s ,  d a t a  f o r  which are 
repor ted  separa te ly . )  

(The dewar on t h e  l e f t  i n  

Figure 5 shows schematical ly  t h e  valve assembly and shroud 
with t h e  var ious  l i n e s  i d e n t i f i e d .  Figure 6 shows t h e  genera l  
experimental arrangement with t h e  f i l l  valve i n  t h e  w e s t  i r r a d i a -  
t i o n  p o s i t i o n  and t h e  17- in. valve i n  t h e  nor th  pos i t ion .  
and leakage measurement l i n e s  e n t e r  t h e  c o n t r o l  room where t h e  
Leakage Measurements Fane1 (LMP) w a s  set up. 
exhaust manifolds w e r e  loca ted  on t h e  nor th  ramp. 

Control  

The cryogen and 

3 . 3  

Leakage rates were measured w i t h  flow-meters of several s i z e s .  
The smallest of these ,  a p o s i t i v e  displacement m e t e r ,  i s  capable 
of measuring a flow rate of  0 t o  1 scfm H2. 
meters have t h e  following ranges: 

The o the r  flow- 
0.2 t o  3 . 2  scfm H2, 2 t o  26 

2, and 15 t o  127 scfm "2. 

schematical ly  i n  Figure 
va lves ,  gages, and 

l e t e l y  cont ro  

sed t i m e .  
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Valve Actuation 
1 on 17-in. Valve 
2 on Fill Valve Shroud Exhaust (1.5-in.) 

Liquid Level Probe 

ng Line (to 

Pressure ?robe 

1 Leakage Ports 

Burst Disc 
Dewar Exhaust (4-in. 

Fill (0.5-in. i.d.) 

--Vacuum Jacketed Dewar 

- Burst Disc 
(Vat Jacket) 

Shroud 

Test Article 
e 

17-in. or Fill Valve) 

-Blind Flange 

Figure 5 Schematic of Test Assemblies 
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Pressure Vent Exhaust 

17-in. 

10-in 

10-in. 

Flange 
Act :. Vent 

Shaft 

Ma in 

10 

7 50 

30-in. Hg Vac 
to 0-15 psi 

T 75 psi 

0-160 psi 
L 7 

L 

Dewar Pressure Control 

Figure 7 Schematic of Leakage Measurement Panel 

psi 

Press. 

Press. 

67 



Table 3 gives t h e  i r r a d i a t i o n  schedule. Table 3 does not 
include s e v e r a l  shor t  durat ion r u n s  a t  lower power l e v e l s  which 
were made i n  order t o  obtain ra te  e f f e c t s  da ta  on t h e  l i q u i d  
l e v e l  sensors  which were being i r r a d i a t e d  simultaneously;  
lower-power runs have been included i n  t h e  computation of t h e  
megawatt hours of Table 3 and t h e  r a d i a t i o n  exposures given i n  
Table 4 ,  

these  

Table 3 

IRRADIATION SCHEDULE 

3.5 Measurement Procedure 

3.5.1 17-Inch Valve 

: Each d a t a  c y c l e  was  accomplished by completing t h e  following 
sequence of  a c t i o n s  : 

1. 
2. 
3. 
4 .  
5. 
6 .  
7. 
8. 
9. 

10 . 
11. 
12 . 

Close 17- in. valve; f i l l  with LH2. 
Apply 20-psig test pressure.  
Measure main seal leakage. 
Measure a c t u a t o r  vent  leakage. 
Reduce test pressure  t o  0 p s i g ,  
Open 17- in. valve; measure t i m e .  
Apply 20-psig test pressure .  
Measure s h a f t  seal leakage, 
Measure f l ange  s ta t ic  seal leakage. 
Reduce test pressure  t o  0 ps ig .  
Close 17- in. valve; measure t i m e .  
R e f i l l  valve with LH2. 
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Table 4 

DOSIMETRY DATA 

Locat ion 

17-in. Valve Main Seal 
Front 
1/3  Back 
2/3 Back 
F u l l  Back 

17- in. Valve Flange 
Front  
1/4 Back 
1 / 2  Back 
3/4 Back 
F u l l  Back 

17- in .  Valve Actuator 
Midbody 

F i l l  Valve Main S e a l  
Front 
1 /3  Back 
2/3  Back 
Back 

F i l l  Valve Actuator  
North End 
Midbody 
S out h end 

F luenc e 
E > 1  MeV 
(n/cm2) 

5.4(15) 
4.4(15) 
2.3(15) 
3.0( 14) 

4.7(15) 
7.6(15) 
4.7(15) 
7.0(14) 
2.4(14) 

1.1(16) 

9.3(15) 
6.5(15) 
2.3(15) 
1.2(15) 

1.2(16) 
1.4(16) 
5.2(15) 

Gamma Dose 
(ergs/gm(C)) 

8.0(9) 
4.3(9) 
2.2(9) 
3.5(8) 

6.8(9) 

4.6(9) 
6.8(8) 
2.4(8) 

7.3(9) 

1.2 (10) 
1.1(10) 
4.1(9) 
3.0(9) 

1 . 7( 10) 

7.8(9) 
2 . O( 10) 
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13. Perform i r r a d i a t i o n .  
14. Repeat s t e p s  2 through 10. 
15. Warm valves t o  room temperature. 

3.5.2 LH., F i l l  Valve 

Each data  cyc l e  w a s  accomplished by completing t h e  follow- 
ing sequence of ac t ions :  

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9 .  

10 . 
11. 
12  . 
13. 
14 . 
15 . 
16. 
1 7  . 
18 . 

Close 10-in. valve; f i l l  w i t h  LH2. 
Measure ac tua to r  p ressure  decay. 
Apply 40-psig test pressure .  
Measure main g a t e  seal leakage. 
Reduce test p ressure  t o  0 p i g .  
Measure l a t c h  cover p l a t e  leakage, va lve  closed.  
Open 10- in. va lve;  measure opening t i m e .  
Measure l a t c h  cover p l a t e  leakage, va lve  open. 
Measure ac tua to r  p i s t o n  rod seal leakage, va lve  open. 
Apply 40-psig test pressure .  
Measure i d l e r  s h a f t  seal leakage. 
Measure d r i v e  s h a f t  seal leakage. 
Reduce test p ressure  t o  0 psig.  
Close 10- in. va lve;  measure c lo s ing  t i m e .  
R e f i l l  va lve  w i t h  LH2. 
Perform i r r a d i a t i o n .  
Repeat s t e p s  2 through 13. 
W a r m  va lve  t o  room temperature. 
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IV.  RESULTS AND DISCUSSION 

4.1 17-Inch Valve 

Table 5 gives  t h e  r e s u l t s  of t h e  17-in. va lve  i r r a d i a t i o n .  
Main seal leakage s tayed w e l l  w i th in  s p e c i f i c a t i o n  and var ied  
randomly from run t o  run. 
age remained e s s e n t i a l l y  zero  throughout t h e  test. 
t he  e igh t  da t a  cyc les  t h e  ac tua to r  vent leakage w a s  w e l l  above 
s p e c i f i c a t i o n ,  but i t  was  zero  a t  t h e  end of t h e  test. 
a t rend  toward inc reas ing  valve  opening t i m e  as t h e  test  progressed. 
I n  one ins tance  t h e  valve s tuck  c losed but opened on t h e  second 
t r y .  
as compared w i t h  t h e  s p e c i f i c a t i o n  of 2 seconds. 
remained w e l l  w i th in  t h e  s p e c i f i c a t i o n  of 1 second i n  each of t h e  
cycles  . 

Shaf t  seal and f l ange  static seal leak-  
I n  t h ree  of 

There w a s  

A t  t h e  end of t h e  test t h e  opening time w a s  3 t o  5 seconds 
The c lo s ing  t i m e  

It is  concluded t h a t  t h e  cumulative r ad i a t i on  dosage had 
l i t t l e  t o  no e f f e c t  on leakage from t h e  17- in. valve. It is  be- 
l ieved ,  however, t h a t  t h e  combination of inc reas ing  opening t i m e  
and constant  c lo s ing  t i m e  is poss ib ly  evidence of t h e  onset  of 
seal func t iona l  degradation. The valve  opens, and i s  held  open, 
by pneumatic p ressure  developed aga ins t  t h e  ac tua to r  p i s ton  and 
c lo ses  by an opposing spr ing  load on t h e  ac tua to r  p i s ton .  Thus, 
p i s ton  seal degradat ion would tend t o  inc rease  valve opening t i m e  
due t o  gas leakage p a s t  t h e  p i s t o n  without e f f e c t i n g  c lo s ing  t i m e  
a t  a l l .  

Visual  inspect ion of t h e  seals f a i l e d  t o  d i s c lo se  any s ign  of 
All seals were i n t a c t  and seemed to  b e ' i n  good shape. damage. 

Figures 8 and 9 are photographs of t h e  17-in0-valve seals. 

4.2 LH2 F i l l  Valve 

Table 6 g ives  t h e  r e s u l t s  of t h e  LH2 f i l l  va lve  i r r a d i a t i o n .  
Main seal leakage s tayed w e l l  wi th in  spec i f i ca t i ons  and va r i ed  
randomly from run t o  run. 
what as t h e  test progressed. 
l a t c h  cover p l a t e  (valve c losed) ,  ac tua tor  p i s ton  rod seal (valve 
openj,  i d l e r  s h a f t  seal (valve open), and d r ive  s h a f t  seal (valve 
open) a l l  displayed e s s e n t i a l l y  zero  leakage throughout t h e  test. 

Actuator p ressure  decay increased some- 
Actuator p i s t o n  seal (valve c losed) ,  
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Valve opening t i m e  w a s  less than t h e  s p e c i f i e d  minimum of  3 seconds 
i n  t h r e e  of t h e  seven openings. 
t h e  s p e c i f i e d  minimum of  3 seconds i n  s i x  of t h e  seven c los ings .  
I n  no case w a s  e i t h e r  opening o r  c los ing  t i m e  as much as t h e  nomi- 
n a l  5-second s p e c i f i c a t i o n  value.  

Valve c l o s i n g  tide w a s  less than 

Visual  inspec t ion  of t h e  seals f a i l e d  t o  d i s c l o s e  any s igns  
of damage. 
Figures10 and 11 are photographs of seals from t h e  f i l l  valve.  

A l l  seals w e r e  intact and seemed t o  be in  good shape, 

4 . 3 Conc l u s  ions 

The r e s u l t s  of t h i s  i r r a d i a t i o n  experiment i n d i c a t e  t h a t  t h e  
seal materials used i n  e i t h e r  of t h e  valves would be s a t i s f a c t o r y  
f o r  app l i ca t ion  a t  t h e  exposure levels expected i n  t e n  missions 
of a Reuseable Nuclear S h u t t l e  powered by a 1500-MW ~ E R V ~ *  T h i s  
w a s  a n t i c i p a t e d  f o r  t h e  17- in. valve s i n c e  t h e  materials were 
s p e c i f i c a l l y  chosen t o  have ra  i a t i o n  r e s i s t a n c e  super io r  t o  t h e  
replacement materials. 

owever, t h e  performance of t h e  unmodified S-I1 s t a g e  f i l l  
shows t h a t  even Teflon and Kel-F, aterials  widely 

i c  app l i ca t ions  but  of rather l a d t a t i o n  resist 
nc t ion  t o  r a t h e r  high dose 1 

The absence of oxygen during t h e  ra 

c r y o t e m ~ e r a t u ~ e  may a l s o  cont  
t h e  main f a c t o r  s i n c e  oxidat ion e Ca?XlOt  Q C @ U r  

h e  improved 
ance, but when t h e  organic material i s  a c t u a l l y  
cryogen it  is t h e  e e lus ion  of oxygen ra ther  t h  

temperature per  se t h a t  i s  t h e  ch ief  benefactor ,  

rhaps t h e  most imp0 
a l l y  i l l u s t r a t e s  t h  

can be a l l  i m p o ~ ~ a ~ t  in ev a t i on  e f f e c t s  
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SUMMARY 

Light  weight ,  high s t r eng th  boron-epoxy composites w e r e  
i r r a d i a t e d  i n  a nuc lear  r eac to r  and then mechanically t e s t e d  
f o r  s t reng th .  These boron-epoxy laminates,  made by r e in fo rc ing  
an epoxy matr ix  w i t h  1 5  p l i e s  of  un id i r ec t iona l  boron f i l aments ,  
w e r e  i r r a d i a t e d  and t e s t e d  under t h r e e  d i f f e r e n t  combinations of 
temperature which could occur i n  a nuclear-powered spacecra f t  
using a cryogenic p rope l lan t .  
d i a t e d  i n  a i r  o r  water a t  ambient temperatures below 8OoC and 
w e r e  t e s t e d  a t  room temperature, as w e r e  ecimens .of group 2 
which w e r e  i r r a d i a t e d  i n  l i q u i d  hydrogen a t  -253OC. 
of group 3 w e r e  i r r a d i a t e d  and t e s t e d  i n  l i q u i d  n i t rogen  a t  
-196OC without an in termediate  warmup. 
a l l  specimen groups w e r e  degraded pr imar i ly  by thermal neutrons.  
For equivalent  thermal-neutron f luences ,  f l e x u r a l  s t r eng ths  i n  
t h e  l ong i tud ina l  d i r e c t i o n  ( p a r a l l e l  t o  boron f i l aments )  were 
bes t  f o r  specimens of group 1, next  bes t  f o r  those  of group 2 ,  
and poores t  f o r  those of group 3. 
t o  be  d i c t a t e d  by t h e  more r ad i a t i on- sens i t i ve  in te r laminar  shear  
s t r eng th ,  which measures epoxy-to-filament bonding. The order  
of damage above w a s  reversed f o r  t ransverse  f l e x u r a l  s t r eng ths .  

Specimens of group 1 w e r e  irra- 

Specimens 

Mechanical s t r eng ths  of 

This o rder  of degradation seems 
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I. INTRODUCTION 

Unid i rec t iona l  boron-epoxy composite has considerably  higher  
r a t i o s  of t e n s i l e  s t r eng th  t o  weight and e las t ic  modulus t o  weight 
than do conventional  bulk metals. Therefore,  des igners  are giv- 
ing t h i s  material a great: dea l  of  a t t e n t i o n  f o r  s t r u c t u r a l  app l i-  
ca t ions  i n  weight- sensi t ive  spacecra f t .  Much design work has 
a l s o  been done on a nuclear-powered engine f o r  spacec ra f t  under 
NASA's Nuclear Engine f o r  Rocket Vehicle Applicat ion (NERVA) Pro- 
gram. The NERVA engine u t i l i z e s  hydrogen as a prope l lan t  ( s to red  
as a l i q u i d )  and a nuclear  r e a c t o r  as a hea t  source. Thus, i t  i s  
of considerable  i n t e r e s t  t o  know how s t r eng ths  of boron-epoxy 
composites are a f f e c t e d  by mixed-radiation f i e l d s  from a nuc lear  
r e a c t o r ,  both a t  normal ambient temperatures and a t  cryogenic 
temperatures. 

Experiments have been performed i n  which specimens of boron- 
epoxy composite were i r r a d i a t e d  w i t h  t h e  Ground T e s t  Reactor 
(GTR) i n  several environments including l i q u i d  hydrogen, l i q u i d  
n i t rogen ,  a i r ,  and w a t e r .  Maximum r a d i a t i o n  exposures w e r e  more 
than an order  of magnitude higher  than those  expected forward of t h e  
engine tangent  p lane  i n  t en  hours of opera t ion  of t h e  NERVA. I n  
add i t ion  t o  varying t h e  i r r a d i a t i o n  temperature and t o t a l  rad ia-  
t i o n  exposure, t h e  r a t i o s  of r e a c t o r  r a d i a t i o n s  (thermal and f a s t  
neutrons and gamma rays)  w e r e  a l s o  var ied  over l imi t ed  ranges. 
For example, t h e  i r r a d i a t i o n  i n  water w a s  f o r  t h e  purpose of 
ob ta in ing  a high thermal-neutron f luence because boron has a l a r g e  
c ros s  s ec t ion  f o r  thermal neutron capture .  

With t h e  exception of  some specimens i r r a d i a t e d  and t e s t e d  
i n  l i q u i d  n i t rogen  without  warmup, a l l  t e s t i n g  w a s  at  room tempera- 
tu re .  Specimens were of f l e x u r a l  ( longi tud ina l  and t ransverse )  
and shear  types.  
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11. DESCRIPTION OF TEST 

2.1 T e s t  Specimens 

Boron-epoxy specimens f o r  t h e  i r r a d i a t i o n  test w e r e  c u t  from 
15-ply laminated panels  which had a th ickness  of 0.084 in .  
boron reinforcements i n  these  panels  w e r e  4-mil f i laments  of  
n a t u r a l  boron which had been vapor deposi ted on 0.5-mil cores  of 
tungsten w i r e .  These boron f i laments  w e r e  i n i t i a l l y  embedded 
p a r a l l e l  t o  one another i n  tacky epoxy-resin tapes  (Whittaker 
Corporat ion's  Narmco 5505) a t  a dens i ty  o f  about 200 f i laments  
per  inch of t ape  width. These tapes w e r e  then covered wi th  a 1- 
m i l  th ickness  of woven g l a s s  c l o t h  and were p a r t i a l l y  cured t o  
form 5-mil shee t s  of composite material. Panels from which tes t  
specimens were c u t  w e r e  f ab r i ca t ed  by layer ing  15  of these com- 
p o s i t e  p l i e s  toge ther  wi th  t h e  same f i lament  o r i e n t a t i o n .  These 
laminated panels  w e r e  then f u l l y  cured by sub jec t ing  them t o  pro- 
longed hea t  and pressure  t o  form an epoxy matr ix  u n i d i r e c t i o n a l l y  
re in forced  wi th  close-packed boron f i laments  (55% f i laments  by 
volume and 72% by weight) .  
dens i ty  of 2 g/cm3 and were, by weight,  about 60 percent  n a t u r a l  
boron, 28 percent  epoxy, and 12 percent  n a t u r a l  tungsten.  

The 

The f i n i shed  composite panels  had a 

F lexura l  specimens 3.0 i n .  by 0.5 i n ,  w e r e  c u t  from these  
0,084-in. panels  w i t h  t h e i r  major axes both p a r a l l e l  t o  t h e  f i l a -  
ment d i r e c t i o n  ( l ong i tud ina l ,  o r  0' specimens) and perpendicular  
t o  i t  ( t ransverse ,  o r  90° specimens). In ter laminar  shear  speci-  
mens 0.6 i n .  by 0.25 i n .  w e r e  c u t  wi th  t h e i r  major axes l y ing  
along t h e  f i lament  d i r ec t ion .  

2.2 T e s t  Conditions 

The tes t  specimens were i r r a d i a t e d  wi th  t h e  10-MW Ground T e s t  
Reactor during i r r a d i a t i o n s  of  NERVA materials and components , 
Panels o f  specimens w e r e  i r r a d i a t e d  i n  a i r ,  i n  water, i n  l i q u i d  
n i t rogen ,  and i n  l i q u i d  hydrogen. Temperature of t h e  a i r  speci-  
mens w a s  a maximum of 8OoC and of t h e  w a t e r  specimens 5OoC. The 
specimens i r r a d i a t e d  i n  LN2 and LH2 were maintained i n  those  
cryogens throughout t h e  i r r a d i a t i o n s ,  The LH2-irradiated spec i-  
mens w e r e  allowed t o  warm t o  room temperature after  completion 
of t h e  i r r a d i a t i o n ,  whi le  t h e  LN2-irradiated specimens were main- 
t a ined  i n  t h a t  cryogen u n t i l  completion of  t e s t i n g ,  
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2.3 Mechanical T e s t s  

A l l  composite specimens w e r e  loaded t o  f a i l u r e  on an In s t ron  
machine a t  a crosshead speed of 0.05 in./min, and load- def lect ion 
curves w e r e  continuously recorded a t  a c h a r t  speed of 2 in./min. 
The longi tud ina l  f l e x u r a l  specimens w e r e  loaded a t  t h e i r  midpoints 
while br idging a support  span of 2.5 i n . ,  whi le  t ransverse  f l e x u r a l  
specimens w e r e  loaded a t  two po in t s  0.5 in .  e i t h e r  s i d e  of t h e i r  
midpoints whi le  br idging a 2.0-in. span. In ter laminar  shear  spec i-  
mens w e r e  loaded a t  t h e i r  cen t e r s  whi le  supported over a 0.4-in. 
span. The specimens which w e r e  i r r a d i a t e d  i n  a ir  o r  w a t e r  a t  
ambient temperatures w e r e  a l l  mechanically t e s t e d  a t  room tempera- 
t u r e ,  as w e r e  t h e  specimens which had been i r r a d i a t e d  i n  LH2. The 
specimens which w e r e  i r r a d i a t e d  i n  LN2 w e r e  a l s o  t e s t e d  i n  LN2 
without  in termediate  warmup. This was accomplished by immersing 
t h e  var ious  test  f i x t u r e s  i n  a s p e c i a l  LN2 Dewar  which w a s  sup- 
por ted by t h e  compression p l a t e  of t h e  In s t ron  machine. The 
specimens were rhen loaded by t h e  downward motion of t h e  Ins t ron  
crosshead i n  t h e  usual  way, w i t h  t h e  weight of t h e  LN2-filled 
Dewar  and t h e  tes t  f i x t u r e  being balanced out  of t h e  recorded 
loads ,  

U l t i m a t e  f l e x u r a l  s t r eng ths  f o r  l ong i tud ina l  and t ransverse  
specimens were ca l cu l a t ed  from t h e  formulas ( R e f .  1) 

F(Oo) - 3s P 
2 2wt 

3s 
F(90°)  = - P Y  

4 w t 2  

and in te r laminar  shear  s t r eng ths  w e r e  c a l cu l a t ed  from (Ref. 2) 

3 s =  - P .  
4 w t  

Here, P is  t h e  f a i l u r e  load ( l b )  on a specimen of width w ( in . )  
and th ickness  t ( i n . ) ,  and S i s  t h e  magnitude of t h e  support  
span length  measured i n  inches f o r  t h e  f l e x u r a l  specimen i n  
quest ion (2.5 f o r  l ong i tud ina l  specimens and 2.0 f o r  t ransverse  
specimens). 

The width and t h e  th ickness  of each specimen tested a t  room 
temperature w e r e  measured t o  t h e  nea re s t  0.001 in .  before  and 
a f t e r  i r r a d i a t i o n ,  and the dimensions af ter  i r r a d i a t i o n  w e r e  used 
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i n  t h e  equat ions  above. Dimensions of t h e  specimens i r r a d i a t e d  
and t e s t e d  i n  LN2 w e r e  measured only before  i r r a d i a t i o n ,  and 
these  values  w e r e  used i n  s t r eng th  ca l cu l a t i ons  f o r  $hose speci-  
mens. 
i r r a d i a t i o n  d i d  n o t  d i f f e r  by much from a thickness  of 0.084 in .  
and a width of  0.500 o r  0.250 in .  f o r  f l e x u r a l  specimens or  shear  
specimens, respec t ive ly .  The dimensions of  specimens measured 
before  room-temperature t e s t i n g  w e r e  increased somewhat by irra- 
d i a t i o n ,  probably because of helium-gas formation i n  t h e  spec i-  
mens. Thicknesses increased by as much as 5 percent  and widths 
by some f e w  t en ths  of a percent .  Accurate dimensional measure- 
ments could not  be  made af ter  t h e  specimens i n  LN2 w e r e  t e s t e d ,  
f o r  t he se  specimens delaminated severe ly  on warmup. 

Dimensions of  specimens w e r e  very  uniform and before  

2.4 Dosimetry 

Each test panel  w a s  instrumented w i t h  t en  phosphorus detec-  
t o r s ,  s i x  bare  and four  cadmium covered, arranged so t h a t  e igh t  
values  of thermal-neutron f luence (E<0.48 eV) over each tes t  
panel  w e r e  c a l cu l a t ed  from measured r a d i o a c t i v i t i e s  of d i f f e r e n t  
p a i r s  of de t ec to r s .  Mean thermal-neutron f luences  f o r  each test 
panel  w e r e  obta ined by averaging t h e  e igh t  measured values  f o r  
d i f f e r e n t  pos i t i ons  on each panel .  One s tandard dev ia t ion  from 
t h e  mean f o r  t h e  e igh t  measured values w a s  less than 20 percent  
i n  a l l  cases but  one, f o r  which i t  w a s  30 percent .  Mean f a s t -  
neutron f luences  ( E > 1 . 0  MeV) f o r  each tes t  panel  w e r e  obtained 
by averaging values  ca l cu l a t ed  from r a d i o a c t i v i t y  measurements 
of two n i c k e l  f o i l s .  One s tandard dev ia t ion  from t h e  mean f o r  
these two values  w a s  less than 15 percent  i n  a l l  cases. Gamma 
doses were measured with coba l t- g lass  dosimeters during s h o r t  
pre l iminary mapping runs. 
l i n e a r l y  p ro jec ted  over t h e  long test runs t o  ob ta in  gamma doses. 

These mapping doses per  MWh were then 

Table 1 i d e n t i f i e s  t h e  var ious  test  panels  by r a d i a t i o n  
environment and gives  t h e  r a d i a t i o n  exposures f o r  each. The 
d a t a  are ordered i n  t h r e e  groups according t o  increas ing  thermal- 
neutron f luence.  
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111. RESULTS 

Average s t r eng ths  for t h e  t h r e e  types of boron-epoxy speci-  
mens are l i s t e d  i n  Table 2 f o r  t h e  var ious  condi t ions  of i r r a d i a -  
t i o n  and mechanical t e s t i n g ,  and percentage s tandard dev ia t ions  
f o r  t h e  f i v e  specimens of each type are l i s t e d  i n  Table 3 .  The 
da t a  of Table 2 are l i s t e d  according t o  increas ing thermal-neutron 
f luences  received by specimens i n  t h r e e  groups: group 1 i r r a d i a t e d  
i n  a i r  o r  water a t  ambient temperatures ( <80°C) and mechanically 
t e s t e d  a t  room temperature (RT), group 2 i r r a d i a t e d  i n  LH2 (20.3'K) 
and tested at  RT, and group 3 i r r a d i a t e d  i n  LN2 (77.4OK) and t e s t e d  
i n  LN2 y i t h o u t  in termediate  warm-up. 
mens w e r e  s t o r e d  i n  t h e  var ious  i r r a d i a t i o n  environments (air ,  
LH2, and LN2) f o r  t h e  same length  of t i m e  as t h e  i r r a d i a t e d  speci-  
mens and w e r e  then mechanically t e s t e d  a t  t h e  temperature appro- 
p r i a t e  f o r  each of  t h e  t h r e e  groups. 

Unirradia ted c o n t r o l  speci-  

The long i tud ina l  f l e x u r a l  s t r eng ths  and in ter laminar  shear  
s t r eng ths  f o r  t h e  t h r e e  test condi t ions  are p l o t t e d  aga ins t  
thermal-neutron f luence  i n  Figure  1, and t ransverse  f l e x u r a l  
s t r eng ths  are s i m i l a r l y  p l o t t e d  i n  Figure  2. 
enough da t a  t o  p l o t  curves f o r  s t r eng ths  of specimens i n  group 3;  
t h e  t e n t a t i v e  curves are drawn more f o r  t h e  purpose of connecting 
t h e  t h r e e  da ta  po in t s  t h a n ' f o r  def in ing  func t iona l  s t r eng th  re- 
l a t i onsh ips .  It is  n o t  pos s ib l e  t o  completely s epa ra t e  t h e  e f f e c t s  
of mixed- field r a d i a t i o n s  from a nuclear  r e a c t o r ,  of course ,  so 
t h a t  i t  i s  no t  s t r i c t l y  proper t o  p l o t  any of t h e  s t r eng th  da t a  
aga ins t  thermal-neutron f luence alone.  However, except f o r  t h e  
t ransverse  f l e x u r a l  s t r eng th  a t  low thermal-neutron f luences  and 
a t  gamma doses i n  t h e  range of 1O1O erg/g(C) (where c ross- l ink ing  
of epoxies are known t o  occur) ,  a l l  s t r eng th  da t a  c o r r e l a t e  very 
w e l l  with thermal-neutron f luence but  no t  w i t h  gamma dose o r  fast-  
neutron f luence,  so t h a t  i t  i s  concluded t h a t  thermal-neutron 
f luence i s  predominately respons ib le  f o r  t h e  observed r a d i a t i o n  
e f f e c t s  on s t r eng ths  of boron-epoxy composites. 

There are no t  r e a l l y  

The long i tud ina l  f l e x u r a l  s t r eng ths  a t  room temperature of  
specimens i r r a d i a t e d  i n  a i r  o r  w a t e r  does no begin t o  decregse 
u n t i l  thermal-neutron f luences  beyond 4 x loE7 n/cm2 ( E  < 0.48 e V )  
are reached, but  i t  then f a l l s  o f f  r a p i d l y  and i s  degraded by 
more than 75 percent  a t  t h e  h ighes t  the rmal  f luence of 7 x 1OI8 
n/cm2. The room-temperature s t r eng th  of l ong i tud ina l  specimens 
i r r a d i a t e d  i n  LH2 f a l l s  o f f  even more sharp ly  above a thermal 
f luence of 2 x 1017 n/cm2 and is  degraded by about 50 percent  a t  
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Table 3 

COEFFICIENTS OF VARIATION FOR EACH SPECIMEN GROUP 

T e s t  
Panel 
Number 

Control 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Per(  
Longitudinal  
Flex S t rength  

L 1.1 
3.7 
2.0 
2.6 
2.5 
2.6 
3.4 
2 .7  
6.8 
9.6 

Control 2 1.6 
10 2.8 
11 1.5  
12  9.8 

' 

Control 3 1 . 2  
13  7.8 
14 9.5 

mtaee Standard D viations* 
Transverse 
Flex Strength  

8.3 
3.3 
6.6 
4.5 
5.8 

4 .1  
1.9 

- 

- 

5.7 
3.9 
4.8 
8.3 

6.9 
2.9 
6.4 

I n t e r  laminar 
Shear  St rength  

4.3 
0.8 
2.6 
1.8 
2.5 
4.4 
2 . 1  

16.4 
6.2 
5.9 

3.8 
2 . 1  
1.1 
4.8 

3.6 
4 .1  
7.8 

*Based on f i v e  specimens. 
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a f luence  of  5 x 1017 n/cm2. 
a t  LNz temperature i s  degraded s t i l l  more severe ly  by r a d i a t i o n  
exposure, being reduced by almost 50 percent  at a thermal-neutron 
f luence of  1.6 x 1017 n/cm2. 

The long i tud ina l  f l e x u r a l  s t r eng th  

The in te r laminar  shear s t r eng ths  of boron-epoxy specimens 
begin t o  be degraded a t  thermal-neutron f luences  roughly an order  
of magnitude lower than those  f o r  l ong i tud ina l  f l e x u r a l  spec i-  
mens f o r  each of t h e  t h r e e  tes t  condi t ions .  The room-temperature 
shear  s t r eng th  of  specimens i r r a d i a t e d  i n  air  or w a t e r  begins t o  
drop o f f  r a p i d l y  beyond a thermal-neutron f luence  of 2 x 10l6  n/cm2 
and is 85 percent  lower than t h e  c o n t r o l  va lue  a t  t h e  h ighes t  
f luence  of 7 x 10l8 n/cm2, whi le  t h e  room-temperature shear  s t r eng th  
of  specimens i r r a d i a t e d  i n  LHz begins t o  f a l l  o f f  above a f luence 
of 4 x 10l6  n/cm2 and i s  reduced by about 80 percent  a t  a f luence 
of 5 x 1017 n/cm2. 
graded by about 80 percent  a t  an even lower f luence of 1.6 x 1017 
n/crnz. 

The shear  s t r eng th  a t  LN2 temperature i s  de- 

The t r ansve r se  f l e x u r a l  s t r eng ths  of Figure  2 begin t o  f a l l  
below c o n t r o l  values  f o r  roughly t h e  same thermal-neutron f luences  
as do t h e  shear  s t r eng ths  f o r  each of t h e  t h r e e  tes t  groups. The 
room-temperature t ransverse  s t r eng th  f o r  specimens i r r a d i a t e d  i n  
a i r  begins t o  f a l l  o f f  f irst  a t  a f luence of about h x 10 l6  n/cm2 
and i s  70 percent  below t h e  c o n t r o l  va lue  a t  a f luence  of 3.6 x 
1017 n/cmz, whi le  t h e  room-temperature s t r eng th  of specimens irra-  
d i a t ed  i n  LH2 begins t o  f a l l  o f f  next  a t  a f luence of about 4 x 
1016 
5 x 10 n'5mn/cm2 . The t r ansve r se  f l e x u r a l  s t r eng th  a t  LN2 tempera- 
t u r e  f a l l s  o f f  much less r a p i d l y  and is on ly  15 e rcen t  below t h e  

s t r eng th  increases  a t  lower f luences  (dashed sec t ions  of t h e  
curves)  r e f l e c t  c ross- l ink ing  i n  t h e  epoxy matrix caused pr imar i ly  
by gamma-ray exposures, as mentioned above, and should no t  proper ly  
be p l o t t e d  aga ins t  thermal-neutron f luence,  but  thermal-neutron 
degradation does eventua l ly  take over f o r  h igher  exposure doses 
( s o l i d  s ec t ions  of  curves) .  

and is  reduced by almost 70 percen t  a t  a f luence of  

c o n t r o l  s t r eng th  a t  a f luence of 1.6 x 1017 n/cm 3 -  . The t ransverse-  

F lexura l  moduli were also measured fo r  t h e  l ong i tud ina l  and 
t ransverse  specimens; these  mean values  along with percentage 
dev ia t ions  from t h e  means are presented i n  Table 4 .  
seen t h a t  t h e  t r ansve r se  f l e x u r a l  modulus i s  much more a f f e c t e d  
by r a d i a t i o n  exposure than i s  i h e  l ong i tud ina l  f l e x u r a l  modulus, 
as i s  t o  be expected, and t h a t  both moduli genera l ly  begin t o  
f a l l  o f f  s i g n i f i c a n t l y  a t  t h e  same t i m e  t h a t  t h e  r e spec t ive  

It can be  
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Table 4 

FLEXURAL MODULI OF IRRADIATED BORON-EPOXY COMPOSITES 

Panel 

Control 1 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Control 2 
10 
11 
12  

Control 3 
13 
14  

Longitudinal Flexura l  
M;dulus I (10: (;; i) 

23.6 
23.1 
23.2 
23.6 
25.8 
25.6 
25.3 
23.9 
19.5 
14.0 

23.9 
24.2 
23.4 

1.09 
2.56 
3.09 
2.68 
1.45 
3.36 
3.17 
6.55 
4.31 
4,32 

1.25 
2.36 
1.65 

I 2-53  
20.3 

19.7 
19.9 
19.8 

8 .21  
8.60 
1.53 

Transverse F lexura l  
Modulus lo5  s i  

34.1 
39.4 
37.2 
38.4 
35.1 

24.2 
23,4 

- 

- 

34.6 
38.0 
24.8 
12.4 

15.2 
8 ,8  
8.1 

2.83 
1.64 
2.55 
2.18 
2.12 

3.26 
4.71 

- 

- - 
2.64 
1.57 
1.97 
5.12 

6.32 
9.00 
6.97 
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s t r eng ths  do, but  not  as r a p i d l y  as do t h e  s t r eng ths .  Thus, 
s t r eng th  p r o p e r t i e s  are genera l ly  more s e n s i t i v e  t o  r a d i a t i o n  
than are s t i f f n e s s  p r o p e r t i e s ,  so t h a t  moduli w i l l  u sua l ly  be 
a f f e c t e d  only above t h e  exposure thresholds  given f o r  s t r e n g t h  
degradations.  The exception t o  t h i s  is  f o r  i r r a d i a t i o n  and 
t e s t i n g  i n  LN where t h e  t r ansve r se  modulus fa l l s  off  more 

modulus a l s o  behaves d i f f e r e n t l y  here ,  remaining almost cons tant  
w i t h  r a d i a t i o n  exposure as t h e  s t r eng th  f a l l s  o f f  d r a s t i c a l l y .  

r a p i d l y  than 2 oes t h e  t r ansve r se  s t r eng th .  The long i tud ina l  
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IV . DISCUSS ION 

4.1 Experimental Data 

The long i tud ina l  f l e x u r a l  s t r e n g t h  p r imar i ly  measures t h e  
s t r eng th  of  t h e  boron reinforcement f i laments ,  t h e  t r ansve r se  
f l e x u r a l  s t r eng th  measures t h e  s t r eng th  of  t h e  epoxy matr ix  of. 
t h e  composite, and t h e  in te r laminar  shear  s t r eng th  g ives  a measure 
of f i lament- to-matrix bonding ( R e f s .  3 and 4). Therefore,. t h e  
more mat r ix- re la ted  s t r eng th  p rope r t i e s  are a f f e c t e d  f i r s t  by 
r a d i a t i o n , a s  t o  be  expected. 
matrix by gamma rays  probably dominates up t o  a dose of about 
10l1 ergs/g(C) i f  t h e  thermal  neutron f luence  is less than 1 O I 6  

b e t t e r  bonding with t h e  boron f i laments ,  but  t h e  embr i t t l ed  
matrix also causes increased scatter i n  t h e  measured longi tud ina l  
s t r eng ths .  Matrix degradation by a lpha p a r t i c l e s  and l i th ium 
ions from thermal-neutron r eac t ions  i n  boron f i laments  apparent ly  
begins t o  t ake  over a t  around 10l6  n/cm2, and t h e  t r ansve r se  and 
shear s t r eng ths  decrease s i g n i f i c a n t l y ,  but f o r  a t i m e  t h i s  
allows t h e  less b r i t t l e  composite t o  develop more of t h e  s t r eng th  
of t h e  boron f i laments  i n  t h e  l ong i tud ina l  d i r e c t i o n  (Refs. 5,  6 ,  
and 7). Matrix p rope r t i e s  are soon degraded t o  t h e  ex t en t  t h a t  
reinforcement f i laments  can no longer be proper ly  supported, how- 
ever, and t h e  l ong i tud ina l  s t r e n  t h  then fa l l s  away r a p i d l y  above 

d i n a l  s t r eng th  i s ,  no doubt, enhanced by degradation of  t h e  boron 
f i laments  themselves i n  t h i s  region of  h ighes t  thermal-neutron 
f luences.  
s t rong ly  c o r r e l a t e d ,  i n  genera l ,  but t h e  t r ansve r se  f l e x u r a l  
s t r eng th  a t  LN2 temperature is  very l i t t l e  degraded f o r  long 
r a d i a t i o n  exposures i n  LN2 which severe ly  degrade shear  s t r e n g t h s ,  
and when t h i s  happens t h e  l ong i tud ina l  f l e x u r a l  s t r eng th  drops 
markedly; t h i s  suggests  a r e l a t i o n s h i p  between t h e  l ong i tud ina l  
s t r eng th  and t h e  s h e a r ’ s t r e n g t h ,  a p l o t  of  which is  shown i n  
Figure  3.  There appears t o  be l i t t l e ,  i f  any, c o r r e l a t i o n  between 
the long i tud ina l  s t r eng th  and t h e  t r ansve r se  s t r eng th .  

The c ross- l ink ing  of t h e  epoxy 

n/cm 2 T h i s  hardens and s t i f f e n s  t h e  matr ix  and apparent ly  gives 

thermal-neutron exposures of  101 8 n/cm2. T h i s  l o s s  of longi tu-  

The t ransverse  and shea r  s t r eng ths  are found t o  be 

According t o  Figure  3 ,  t h e  l ong i tud ina l  s t r eng th  i n i t i a l l y  
increases  g radua l ly  as t h e  shear  s t r e n g t h  i s  reduced by rad ia-  
t i o n  exposure, but  it peaks and then fa l l s  o f f  extremely r a p i d l y  
once t h e  shear  s t r eng th  f a l l s  below a va lue  of about 4 ksi .  
Having t h e  c o r r e l a t i o n  curve of Figure  3 ,  which holds for  a l l  
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t h r e e  specimen groups, t h e  s t r eng th  curves of Figure  1 are r e a d i l y  
understandable. The shear  s t r eng th  fa l l s  below 4 k s i  f o r  speci-  
mens of group 3 a t  a smaller thermal-neutron f luence than i t  
does f o r  specimens of  group 2, and s t i l l  a higher  f luence i s  re- 
quired t o  reduce t h e  shear  s t r eng th  of  group-1 specimens below 
t h e  4- ksi  value.  Therefore,  t h e  l ong i tud ina l  s t r eng ths  of 
Figure  1 f a l l  o f f  f i rs t  for  specimens of group 3 ,  next f o r  spec i-  
mens of  group 2 ,  and last  f o r  specimens of group 1. Figure  3 
w a s  used as an a i d  i n  drawing t h e  longi tud ina l- s t rength  curve of 
Figure  1 f o r  specimens of group 3 .  

It i s  i n t e r e s t i n g  t o  no te  t h a t  t h e  order  i n  which t h e  t r ans-  
verse f l e x u r a l  s t r eng ths  of  Figure  2 f a l l  o f f  f o r  t h e  var ious  
specimen groups i s  exac t ly  t h e  reverse of  t h a t  f o r  t h e  longi tud i-  
n a l  s t r e n g t h s  of  Figure  1. The t r ansve r se  s t r eng th  holds up b e s t  
f o r  group 3 i n  which specimens w e r e  i r r a d i a t e d  and mechanically 
t e s t e d  i n  LN2 without  warmup. Here, t h e  helium atoms introduced 
i n t o  boron f i laments  by (n,cu) r eac t ions  are "frozen" wi th in  t h e  
f i laments  and cannot d i f f u s e  i n t o  t h e  matrix of t h e  composite, 
so t h a t  t r ansve r se  s t r eng ths  should be  less degraded i n  t h i s  
case. I n  t h e  ambient- temperature i r r a d i a t i o n  of specimens i n  
group 1, helium atoms can more r e a d i l y  d i f f u s e  out  of t h e  f i l a-  
ments and c o l l e c t  t o  form gas bubbles i n  matrix vo ids ,  and t h e  
t ransverse  s t r eng th  i s  most severe ly  degraded f o r  t h i s  case. 
For specimens of group 2, -helium atoms are "frozen" wi th in  t h e  
f i laments  during t h e  course  of t h e  i r r a d i a t i o n  i n  LH2 and are 
then r a p i d l y  r e l ea sed  when specimens are re turned t o  room tempera- 
t u r e  for  t e s t i n g ;  t h i s  gives a matrix damage in termediate  t o  t h e  
o the r  t w o  condi t ions .  I n  o t h e r  words, for  t h e  same r a d i a t i o n  
exposure, t h e  t r ansve r se  s t r eng th  decreases f o r  specimen groups 
which g ive  increas ing  helium concentra t ions  i n  t h e  epoxy matrix 
a t  t h e  t i m e  of  t e s t i n g ,  and t h e  l ong i tud ina l  s t r eng th  decreases 
f o r  specimen groups which g ive  increas ing  helium concentra t ions  
i n  t h e  boron f i laments .  

For most a c t u a l  s t r u c t u r a l  app l i ca t ions ,  composites having 
boron f i laments  running i n  a l l  d i r e c t i o n s  would be  used, so t h a t  
t h e  t w o  most important s t r eng th  p rope r t i e s  of un id i r ec t iona l  
composites app l i cab le  t o  such m u l t i d i r e c t i o n a l  composites wQuld 
be  (1) t h e  long i tud ina l  f l e x u r a l  s t r eng th  and (2) t h e  in ter laminar  
shear  s t reng th .  On t h e  bas i s  of  t he se  two s t r eng ths ,  t h e  t h r e e  
condi t ions  of i r r a d i a t i o n  and t e s t i n g  would be rated according 
t o  decreas ing s e v e r i t y  as follows: (1) i r r a d i a t i o n  and t e s t i n g  
a t  cryogenic temperature without  in termediate  warmup, (2) irra- 
d i a t i o n  a t  cryogenic temperature and t e s t i n g  at  RT, and (3)  
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i r r a d i a t i o n  at ambient temperature and t e s t i n g  a t  RT. 
epoxy composites i n  a nuclear-powered spacec ra f t  using a hydrogen 
p rope l l an t ,  f o r  example, would be most suscep t ib le  t o  r a d i a t i o n  
damage i f  i r r a d i a t e d  and s t r e s s e d  w h i l e  i n  contac t  w i t h  t h e  
cryogen, they  would be less damaged i f  i r r a d i a t e d  i n  con tac t  
w i t h  t h e  cryogen and then slowly r a i s e d  i n  temperature before  
being s t ressed ,*  and they would be s t i l l  less damaged i f  irra- 
d ia ted  and s t r e s s e d  near  room temperature. 

Boron- 

The curves of Figures  1 and 2 w e r e  measured f o r  continuous,  
cons tant- f lux  i r r a d i a t i o n s  i n  t h e  var ious  env-lronments. I f  t hese  
same r a d i a t i o n  exposures were achieved i n  a series of s h o r t e r  
i r r a d i a t i o n s  i n  t h e  appropr i a t e  environments, as might occur w i t h  
t h e  r e s t a r t a b l e  NERVA engine, then mechanical p roper t i e s  of boron- 
epoxy materials would s t i l l  be expected t o  roughly follow t h e  
degradation curves shown i n  t h e  f igures .  Curves 2 and 3 f o r  cryo- 
genic i r r a d i a t i o n s  should hold almost exac t ly ,  and curve 1 should 
be approximately c o r r e c t  i f  i r r a d i a t i o n  t i m e s  are long i n  com- 
parison t o  t h e  t i m e  requi red  f o r  speciqens t o  reach equi l ibr ium 
temperatures during i r r a d i a t i o n .  Dif ferent  degradation curves 
would be expected i f  test environments were changed during c y c l i c  
i r r a d i a t i o n s ,  of course,  f o r  t h e  curves of Figures  1 and 2 are 
a l l  f o r  a given i r r a d i a t i o n  environment. 

The lowest damage threshold  f o r  t h e  most severe i r r a d i a t i o n  
environment on a p a r t i c u l a r  mechanical property  should s t i l l  
de f ine  lower damage thresholds  f o r  c y c l i c  i r r a d i a t i o n s  i n  d i f f e r e n t  
environments, however, f o r  damage thresholds  could only be r a i s e d  
by switching t o  l e s s  severe environments (except poss ib ly  f o r  
specimens warmed a f t e r  i r r a d i a t i o n  i n  L N 2 )  
mens f i r s t  i r r a d i a t e d  t o  a thermal f luence  of 1017 n/cm2 i n  LH2 
w e r e  allowed t o  gradual ly  r e t u r n  t o  RT and w e r e  then i r r a d i a t e d  

I f  composite spec i-  

~~ ~ ~~ 

*Boron-epoxy composites i r r a d i a t e d  i n  LN2 d i s i n t e g r a t e  explo- 
s i v e l y  when removed from LN2 and allowed t o  warm. 
occur i n  L H 2 ,  and an explanation f o r  t h i s  behavior has not  y e t  been 
determined with c e r t a i n t y .  However, i t  i s  bel ieved t o  be caused by 
t h e  absorpt ion and decomposition of  n i t rogen  t r i o x i d e  (NO3) which 
i s  formed from s m a l l  oxygen impur i t ies  ( <  20 ppm) i n  i r r a d i a t e d  
L N 2 .  The NO3 r a d i c a l  probably forms and decomposes through t h e  
chemical r eac t ions  NO + 02 + M--+NO3 + M and NO3 + N O 3 - 2 N 0 2  + 02. 
The explosive decomposition of  absorbed NO3 on warmup may w e l l  be 
i n i t i a t e d  by t h e  pressure  buildup from trapped helium gas i n  t h e  
composite specimens 

This does not  
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t o  an a d d i t i o n a l  f luence of 1017 n/cm 2 at  ambient temperature. 
f o r  example, then t h e  long i tud ina l  s t r eng th  (at RT) should be- 
roughly t w i c e  t h a t  f o r  a specimen i r r a d i a t e d  t o  2 x 1017 n/cm2 
i n  LH2 and mechanically t e s t e d  without  warmup, assuming t h a t  t h e  
proper ty  curves would no t  d i f f e r  too much from curve 3 f o r  irra- 
d i a t i o n  and t e s t i n g  i n  LN2. Likewise, t h e  in te r laminar  shear 
s t r eng th  should be considerably g r e a t e r  f o r  t h e  two-cycle irra- 
d i a t i o n ,  but  t h e  t ransverse  s t r eng th  should be only about one 
ha l f  t h a t  of t h e  one-shot i r r a d i a t i o n  of t h e  s a m e  exposure dose. 
Therefore, change of environments during c y c l i c  i r r a d i a t i o n  can 
g r e a t l y  a f f e c t  s t r eng ths  of boron-epoxy composites, and rough 
estimates of t hese  temperature e f f e c t s  can be determined from 
Figures 1 and 2. 

4.2 Mechanisms of Damage 

The boron nucleus has a l a r g e  c ros s  s ec t ion  f o r  i n t e r a c t i n g  
w i t h  a low-energy neutron and being " s p l i t "  i n t o  two high-energy 
charged p a r t i c l e s  which on escaping from boron f i laments  are 
extremely damagtng t o  t h e  epoxy matrix and i t s  bonding wi th  re- 
inforcement f i laments .  Because of t h i s  nuclear  i n t e r p l a y  between 
boron atoms and epoxy molecules of  a composite, i t  i s  no t  poss ib l e  
t o  determine r e l i a b l e  radiat ion- exposure thresholds  f o r  s t r eng th  
degradataons i n  a r e a c t o r  f i e l d  by consider ing only t h e  gamma-ray 
component' and i t s  ion iz ing  effects on t h e  more r ad i a t ion- sens i t i ve  
epoxy matlfix of t h e  composite. 

Boron-10 atoms have a c ros s  s ec t ion  of 3840 barns f o r  absorb- 
ing neutrons which are i n  energy equil ibrium w i t h  atoms of a room- 
temperature, low-absorbing medium with which t h e  boron atoms have 
an i n t e r f a c e .  An alpha p a r t i c l e  is  emit ted  when such a "thermal" 
neutron (0.025 eV)  is  absorbed and t h e  exc i ted  boron atom i s  t r ans-  
muted i n t o  a l i thium-7 ion. 
r eac t ion  w i l l  d iv ide  an average k i n e t i c  energy of 2.34 MeV i n  in-  
verse  proport ion t o  t h e i r  masses, so t h a t  t h e  He4 and L i 7  ions 
have average i n i t i a l  k i n e t i c  energies  of 1.49 MeV and 0.85 MeV, 
r espec t ive ly .  These energe t ic  charged p a r t i c l e s  have extremely 
s h o r t  ranges i n  boron f i laments  ( < l o p ) ,  but some of the  charged 
p a r t i c l e s  from reac t ions  which take  p l ace  near  ou te r  sur faces  of 
t h e  100- P f i laments  w i l l  escape and cause extensive  ion iza t ion  
damage over sho r t  ranges i n t o  t h e  epoxy matrix of t h e  composite, 
and t h e  bond s t r eng th  between f i lament and matrix would seem t o  
be p a r t i c u l a r l y  s e n s i t i v e  t o  t h i s  type of i n t ense  loca l i zed  damage. 

The charged p a r t i c l e s  from t h i s  (n ,a)  
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I n  any case, n e u t r a l  impurity atoms of  He4 and L i 7  i n i t i a l l y  
rest i n  t h e  near  neighborhood of  each (n,a) r eac t ion  si te.  
atoms probably remain near  these  s i tes ,  but  t h e  gaseous The L i  

boron f i laments  a t  e leva ted  temperatures and c o l l e c t  i n  matrix 
voids a t  f i lament  i n t e r f a c e s  t o  form gas bubbles which grow dur-  
ing i r r a d i a t i o n  (Refs. 8-12). These gas bubbles exert high 
loca l i zed  pressures  which tend t o  cause separa t ion  of f i laments  
from t h e  matrix. Thus, i n  summary, some few percent  of  t h e  high- 
energy charged p a r t i c l e s  from (n,a)  r eac t ions  i n  boron f i laments  
promptly escape from t h e  f i laments  and expend t h e i r  remaining 
k i n e t i c  energ ies  i n  less than 1 0 ~  of epoxy, where t h i s  energy is 
l a r g e l y  expended i n  ion iz ing  atoms of epoxy molecules over these  
s h o r t  ranges. O f  t h e  major i ty  of  t h e  p a r t i c l e s  which are i n i t i a l l y  
stopped i n  f i laments ,  another several percent  of t h e  gaseous- 
helium atoms slowly d i f f u s e  out  of  t h e  f i laments  during high- 
temperature i r r a d i a t i o n s .  

H e  4 atoms, being chemically i n e r t ,  tend t o  d i f f u s e  out  of t h e  

, 
There are, then,  two sources  of damage from (n,a)  r e a c t i o n s  

a t  e leva ted  temperatures,  bu t  t h e  second of these sources  i s  
l a r g e l y  el iminated i n  cryogenic i r r a d i a t i o n s  where impurity atoms 
are frozen i n t o  p lace  a f t e r  once coming t o  rest.  This suggests  
t h a t  there might be s i g n i f i c a n t  d i f f e rences  i n  r a d i a t i o n  damage 
of boron-epoxy composites between ambient and cryogenic i r r a d i a -  
t i o n s ,  and t h a t  t h e  p o s t i r r a d i a t i o n  temperatures a t  and p r i o r  t o  
s t r eng th  measurement are l i k e l y  t o  be important,  as w a s  found t o  
be the  case. 

10 The (n,a)  c ross  s e c t i o n  f o r  n a t u r a l  boron (19.8% B ) is  
e s s e n t i a l l y  due e n t i r e l y  t o  t h e  B l 0  i so tope ,  so t h a t  t h e  thermal 
c ross  s e c t i o n  f o r  t h e  average n a t u r a l  boron atom of f i laments  is 
760 barns.  
i n  n a t u r a l  boron i s  about l o o p ,  t h e  diameter of a boron f i lament ,  
so t h a t  v i r t u a l l y  every such neutron which s t r i k e s  a 15-ply com- 
p o s i t e  laminate undergoes r eac t ion .  I n  add i t ion  t o  t h e  damaging 
e f f e c t s  of r e a c t o r  gamma rays  on t h e  epoxy matrix of a composite 
re inforced  with boron f i laments ,  then, t h e r e  i s  a l s o  thermal- 
neutron damage which is s e n s i t i v e  t o  t h e  temperatures a t  which t h e  
composite specimens are i r r a d i a t e d  and mechanically t e s t ed .  More- 
over ,  t h i s  thermal-neutron con t r ibu t ion  i s  q u i t e  important i n  
s t r eng th  degradation,  s i n c e  a g r e a t  many low-energy neutrons are 
produced i n  nuclear  r e a c t o r s  and s i n c e  a l l  such neutrons inc iden t  
on composites undergoe (n,a)  reac t ions .  The (n,a)  c ross  s e c t i o n  
of n a t u r a l  boron is  inve r se ly  propor t iona l  t o  the  square root  of 

Th.erefore, t h e  mean f r e e  pa th  of  a thermal  neutron 
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t h e  neutron energy (going as t h e  r ec ip roca l  of  v e l o c i t y )  f o r  
energies  below 165 keV, and does no t  depar t  too much from t h i s  
r e l a t i o n s h i p  f o r  energies  considerably  higher .  
fast neutrons from r e a c t o r s  are not  nea r ly  so  important a source 
of r a d i a t i o n  damage i n  boron-epoxy composites as are thermal  
neutrons.  

Therefore, 
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V . COMCLUS IONS 

St rengths  of boron-epoxy composites are pr imar i ly  affected 
by gamma-ray and thermal-neutron components of  r e a c t o r  r ad i a t i on .  
The t r ansve r se  f l e x u r a l  s t r eng th  and t h e  in te r laminar  shear  s t r eng th  
are improved by c ross- l ink ing  of t h e  epoxy matr ix  f o r  gamma doses 
below l o l l  ergs/g(C), provided t h a t  t h e  thermal-neutron f luence is  
below some few 1015 n/cm2, The thermal-neutron f luence  begins t o  
dominate r a d i a t i o n  e f f e c t s  on s t r eng ths  above 10l6  n/cm2, however, 
and from the re  up t o  f luences  of  1017 n/cm2 t h e  t ransverse  s t r eng th  
and t h e  shear  s t r eng th  decrease r ap id ly ,  whi le  t h e  l ong i tud ina l  
f l e x u r a l  s t r eng th  increases  somewhat. F i n a l l y ,  t h e  l ong i tud ina l  
s t reng th  begins t o  decrease r a p i d l y  somewhere above thermal-neutron 
f luences  of 1017 n/cm2, and t h e  o the r  two s t r eng ths  cont inue t o  
f a l l  o f f .  

The more important l ong i tud ina l  s t r e n g t h  i s  degraded a t  1017 
n/cm2 only  f o r  specimens which are i r r a d i a t e d  and t e s t e d  a t  c r  ogenic 

n/cm2 when specimens are i r r a d i a t e d  a t  cryogenic temperature and 
mechanically t e s t e d  a t  room temperature (RT), and i t  increases  t o  
4 x* 1017 n/cm2 when specimens are i r r a d i a t e d  a t  ambient temperature 
and t e s t e d  a t  RT. 
t h e  thermal-neutron f luences  which are required t o  reduce t h e  con- 
t r o l l i n g  in te r laminar  shea r  s t r eng ths  of t h e  composites below about 
4 k s i  f o r  t h e  var ious  temperatures of i r r a d i a t i o n  and t e s t i n g .  
Apparently, then,  only a shear  s t r eng th  somewhat i n  excess of 4 k s i  
i s  requi red  t o  develop t h e  f u l l  s t r eng th  of  t h e  boron reinforcement 
f i laments  i n  a composite laminate. 

temperature without  warmup; t h i s  threshold  increases  t o  2 x 10 P 7 

These damage thresholds  correspond roughly t o  

The most important s t r eng th  p rope r t i e s  of  un id i r ec t iona l  com- 
pos i t e s  which would be app l i cab le  t o  mu l t i d i r ec t iona l  composites 
used i n  a c t u a l  s t r u c t u r a l  app l i ca t ions  would be t h e  l ong i tud ina l  
f l e x u r a l  s t r eng th  and t h e  in te r laminar  shear  s t reng th .  These two 
s t r eng th  p rope r t i e s  appear t o  be  i n t e r r e l a t e d  f o r  a l l  temperature 
condi t ions  of i r r a d i a t i o n  and t e s t i n g ,  and t h e  more rad ia t ion-sens i -  
t i v e  shear  s t r eng th  seems t o  l a r g e l y  determine when t h e  longi tud ina l  
s t r eng th  w i l l  be degraded, wi th  t h e  threshold  being t h e  4-ksi shear  
s t r eng th  previously  mentioned. On t h e  b a s i s  of t h e s e  two unidirec-  
t i o n a l  s t r eng ths ,  t h e  t h r e e  temperature condi t ions  of i r r a d i a t i o n  
and t e s t i n g  f o r  mu l t i d i r ec t iona l  composites would be expected t o  
rate i n  o rder  of increas ing  s e v e r i t y  as follows: (1) i r r a d i a t i o n  
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at ambient temperature and testing at RT, (2) irradiation at cryo- 
genic temperature and testing at RT, and (3) irradiation and test- 
ing at cryogenic temperature without warmup. Flexural strengths 
of multidirectional composites would be expected to show little 
degradation below a thermal-neutron fluence of 1 x 101q n/cm2, no 
matter what the temperatures of irradiation and testing, and they 
might be adequate up to 1 x 1018 n/cm2 when irradiated at ambient 
temperature and tested at RT. 
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SUMMARY 

A study has been made t o  examine and summarize t h e  r e s u l t s  
of o the r  experimentors i n  regard t o  explos ive  materials and 
b i f u e l s  which may be considered f o r  RNS appl ica t ions .  The objec-  
tive of t h e  s tudy w a s  t o  determine t h e  compat ib i l i ty  of candidate  
materials w i t h  an expected maximum gamma-ray exposure of 2 x lo9 
ergs/gm(C) and t o  assess t h e  importance of p o t e n t i a l  problems 
t h a t  are not  encountered i n  Saturn V appl ica t ions .  

The explosive materials considered are TNT, PETN, RDX, HMX, 
DATB, and UDMH. The b i f u e l  reducing agents  considered f o r  secon- 
dary propulsion systems are hydrogen, hydrazine, and monomethyl- 
hydrazine. 
t e t rox ide  and oxygen. 

The b i f u e l  oxidiz ing agents  considered are n i t rogen  

I n  many cases  t h e  var ious  repor ted  r e s u l t s  on t h e  e f f e c t s  
of r ad i a t i on  on explosive materials w e r e  found t o  be ambiguous 
o r  mutually incons i s ten t .  
i n  view of t h e  d i s s i m i l a r  r a d i a t i o n  sources used i n  t h e  experi-  
ments, t he  wide range of dose rate levels employed, and t h e  
d i v e r s i t y  of methods used t o  analyze such r ad i a t i on  e f f e c t s  charac-  
t e r i s t i c s  as volume and composition of evolved gas and impact 
s e n s i t i v i t y  changes . 

Such discrepancies  are t o  be expected 

It i s  poss ib l e ,  never the less ,  t o  draw some d i s t i n c t  i n f e r -  
ences from t h e  a v a i l a b l e  data .  I n  genera l ,  it appears t h a t  doses 
on the  order  of 2 x 109 ergs/gm(C) do no t  produce ca t a s t roph ic  
changes i n  any of t h e  explosives o r  b i f u e l s  t h a t  would normally 
be considered f o r  such app l ica t ions .  
c lus ions  is  given i n  Sect ion I V .  

A summary of s p e c i f i c  con- 
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I. INTRODUCTION 

This r e p o r t  conta ins  a r a d i a t i o n  effects eva lua t ion  of  
some f l i g h t - q u a l i f i e d  S-11 s t a g e  materials and components which 
may be considered f o r  poss ib le  pyrotechnic and a u x i l i a r y  power 
app l i ca t ions  on a Reusable Nuclear S h u t t l e  (RNS). 
of t h i s  s tudy w e r e  (1) t o  determine those pyrotechnic materials, 
p rope l l an t s  and as soc ia t ed  components c u r r e n t l y  contained i n  t h e  
Saturn V which are s u i t a b l e  f o r  use i n  t h e  RNS environment; (2) 
t o  examine and summarize r e s u l t s  of  r a d i a t i o n  e f f e c t s  tests per-  
formed by o t h e r  experimentors regarding candidate  explosive 
materials and b i f u e l s ;  and (3) t o  q u a l i t a t i v e l y  assess p o t e n t i a l  
problems and, where poss ib le ,  e s t a b l i s h  r a d i a t i o n  to le rance  
l i m i t s ,  i.e., t h e  maximum r a d i a t i o n  exposure t o  which t h e  com- 
ponent o r  material can be subjec ted  without incurr ing  s i g n i f i c a n t  
degradation i n  i t s  material performance c h a r a c t e r i s t i c s .  

The ob jec t ives  

This r epor t  is d i r e c t e d  t o  t h e  p o t e n t i a l  problems assoc ia t ed  
w i t h  : 

1. Applications regarding explosive o r  pyrotechnic 
materials f o r  s t a g e  and equipment separa t ion  
systems . 

2. Bifuels  and pyrotechnic materials requi red  f o r  
t h e  a u x i l i a r y  propuls ion and gas generat ion systems. 

3 .  The e f f e c t s  of t h e  nuclear  environment inherent  t o  
RNS missions on non-explosive organic materials 
used i n  t h e  ordnance systems of t h e  S - I 1  s t a g e  of  
Saturn V. This i n v e s t i g a t i o n  supplements t h e  s tudy 
conducted under Contract  NAS8-25848 and repor ted  i n  
FZK-378 (Ref. 1). 

For purposes of t h i s  a n a l y s i s ,  t h e  S mission is assumed 
t o  be of two-years dura t ion  and r e q u i r e  full-power engine 

e r a t i o n s  (1575 MW) r e a c t o r ,  each of  1-hour dura- 
on. The a t i o n  i s  based on t h e  nuclear  f l i g h t  
s t e m  d e f i n i t i o n  s t u d i e s  performed by M c  onnel l  Douglas (Ref, 2 ) .  
e explosive materials and systems conta  ed on t h e  S-11 s t a g e  

of t h e  Saturn V were s e l e c t e d  as re fe rence  systems f o r  performing 
analyses  on components r e p r e s e n t a t i v e  of cu r ren t  liquid-hydrogen 
fue led  veh ic les ,  
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11. EFFECTS OF RADIATION ON EXPLOSIVES 

The RNS and i t s  support ing chemical boosters  w i l l  r e q u i r e  
explosive and pyrotechnic materials f o r  var ious  app l i ca t ions ,  
many of which are common t o  systems such as those  contained on 
t h e  Saturn  V veh ic l e ,  and some app l i ca t ions  which are unique t o  
t h e  RNS. The types of explosives t h a t  might be used and t h e  
range of r a d i a t i o n  environments t o  be considered can be i l l u s t r a t e d  
by consider ing a f e w  of these  appl ica t ions .  

Separat ion of  Propel lant  Tank Stages.  The use of explosives 
as gas generators  would be one method of performing t h i s  function.  
I n  t h i s  app l i ca t ion ,  t h e  explos ive  materials would be exposed t o  
gamma doses as high as 2.5 x lo9 ergs/gm(C) a t  rates as high as 
2.5 x lo8 ergs/gm(C)-h. Materials considered as poss ib l e  candi-  
dates include DATB, RDX, and PETN. A s  d iscussed later, none of 
these  materials have exploded prematurely i n  i r r a d i a t i o n  tests, 
and each of  these candidate  materials has performed s a t i s f a c t o r i l y  
i n  a i r  a t  20'6 when subjected t o  r a d i a t i o n  exposures g r e a t e r  than 
t h a t  p red ic ted .  Only s l i g h t  degradations were noted i n  t h e s e  
tests; however, t h e i r  response a t  low temperatures is unknown. 

Equipment Separat ion and Replacement . The per iodic  replace-  
ment of l a r g e  equipment items such as t h e  a u x i l i a r y  propulsion 
system could be achieved by t h e  use  of l i n e a r  shaped charges and 
explosive b o l t s .  The explosive materials and t h e  support ing 
mechanical components should be capable of r e l i a b l e  operat ion t o  
gamma doses of up t o  2 x 109 ergs/gm(C). 

Space Capsule Separat ion.  The sepa ra t ion  of t h e  manned cap- 
s u l e  w i l l  r e q u i r e  t h e  separa t ion  of a l l  l i n e s  and mechanical con- 
nec t ions  t o  t h e  propulsion system followed by opera t ion  of a 
propulsion system t o  move t h e  capsule  away from t h e  r eac to r .  
Since t h e  manned capsule  w i l l  be loca ted  forward of t h e  propel-  
l a n t  tanks and w e l l  away from t h e  engine, t h e  r a d i a t i o n  exposure 
w i l l  be r e l a t i v e l y  low. No r a d i a t i o n  effects problems with ex- 
p los ives  are t o  be expected i n  t h i s  app l i ca t ion .  

The following subsect ions  p re sen t  a genera l  d iscuss ion of  
t h e  e f f e c t s  of r a d i a t i o n  on explosives and g ive  experimental 
da t a  f o r  s eve ra l  explosives bel ieved t o  be t h e  most s u i t a b l e  
f o r  use  on t h e  RNS. An o v e r a l l  summary of t h e  observed r a d i a t i o n  



e f f e c t s  is given i n  Table 1. 
i n  var ious  re fe rences  are ambiguous o r  mutually incons i s ten t .  
The Table 1 da ta  correspond t o  t h e  exposures and environments 
which most c l o s e l y  approximate those  expected i n  RNS appl ica-  
t ions  . 

I n  a number of cases d a t a  appearing 

2 .1  General Radiat ion Ef fec t s  on Explosives 

2.1.1 Radiat ion Induced I g n i t i o n  

Crys ta l s  of l ead  az ide ,  silver azide, cadmium az ide ,  s i l v e r  
ace ty l ide ,  and n i t rogen  iod ide  have exploded when i r r a d i a t e d  
wi th  an in t ense  beam of e l ec t rons ;  however, t h e  experimentors 
have a t t r i b u t e d  t h i s  r e s u l t  t o  thermal effects ( R e f .  3). Ni t ro-  
gen iod ide  has a l s o  exploded under exposure t o  alpha p a r t i c l e s  
and f i s s i o n  fragments. T h i s  e f f e c t  i s  bel ieved t o  be due t o  t h e  
r e l a t i v e l y  high l i n e a r  energy t r a n s f e r  assoc ia ted  wi th  i r rad5a-  
t i o n  by t h e s e  p a r t i c l e s .  Exposure of TNT, HMX, and blends of 
RDX and TNT t o  90-psec neutron pu lses  from t h e  Godiva r e a c t o r  
f a i l e d  t o  produce detonat ion even though t h e  peak f l u x  l e v e l s  
w e r e  as high as 1 x 
is  several orders  of magnitude higher  than t h e  maximum f a s t -  
neutron f l u x  a n t i c i p a t e d  i n  regions ou t s ide  of t h e  NERVA. 

n/cm*-see (Ref. 4). This neutron f l u x  

Radiat ion induced i g n i t i o n  of  explosives might be enhanced 
a t  cryogenic temperatures by t h e  poss ib l e  formation and accumu- 
l a t i o n  of ozone, ace ty lene ,  and uns tab le  r eac t ion  products.  This  
p o t e n t i a l  problem i s  considered later f o r  RDX and general ized 
conclusions are presented f o r  o the r  materials. 

2 . 1.2 Pressure  Buildup of Radiolyt ic  Gases 

Nuclear r a d i a t i o n  causes t h e  decomposition of  organic ex- 
plos ives  and t h e  subsequent release of r a d i o l y t i c  gases. 
many ins tances ,  gases cont inue t o  be r e l ea sed  a f t e r  terminat ion 
of i r r a d i a t i o n .  Such evolut ion could resu l t  i n  excess ive  pres-  
s u r e  buildup i n  conta iners  similar t o  those  employed f o r  s t o r i n g  
p rope l l an t s  for the a u x i l i a r y  propulsion system. It could a l s o  
i n t e r r u p t  electrical con t inu i ty  of explos ive  t r a i n s  conta ining 
encapsulated explosives i f  t h e  end caps sepa ra t e  from t h e  ex- 
plosive .  

I n  

Candidate a u x i l i a r y  propulsion system oxid izers  and propel-  
l a n t s ,  e.g., monomethylhydrazine, n i t rogen  t e t rox ide ,  and UDMH 
(unsymetrical dimethyl hydrazine) evolve r a d i o l y t i c  gases when 
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subjec ted  t o  nuclear  r a d i a t i o n ,  
are inso lub le  i n  t h e  l i q u i d  phase and cause an increase i n  pres-  
s u r e  (Ref, 5 ) .  

I n  many ins tances  these gases 

The r e s u l t a n t  p ressure  rise can be approximated by 

where P = r e s u l t a n t  p ressure  rise i n  p s i a  

1.1 = u l l a g e  f r a c t i o n  
P = dens i t y  of p rope l lan t  (9m/crn3) 
R = gas evolut ion  ( m l / g m  a t  STP) which is a funct ion 

of both gamma exposure and t i m e  e lapsed s i n c e  
ce s sa t i on  of  i r r a d i a t i o n  

p i  = s tandard  p ressure  = 15 p s i a  

1 

The p ressure  rise is  p l o t t e d  i n  Figure  1 f o r  UDMH a t  var ious  
gas evolut ion  rates. 
UDMH a t  u l l age  f r a c t i o n s  of 20% and 80% (Ref. S ) ,  it is  found 
t h a t  t h e  gas evolut ion  due t o  a gamma dose of 1 x 109 ergs/gm(C) 
would be approximately 2 ml/gm. Figure 1 shows t h a t  t h e  cor res -  
pondin 

mately 400 p s i a  a t  an u l l age  f r a c t i o n  of 10%. 
design rnodif icat ions are a v a i l a b l e  t o  a l l e v i a t e  t h i s  problem : 

From da t a  on t h e  p ressure  rise induced i n  

p ressure  rise at t h e  p red ic ted  maximum exposure of 
2 x 10 6 ergs/gm(C), corresponding to 4 ml/gm, would be approxi-  

Severa l  minor 

1. The prope l lan t s  could be s to red  i n  a region of 
lower r a d i a t i o n  i n t e n s i t y  . 

2. Vent valves  could be i n s t a l l e d  which would per iod i-  
c a l l y  be ac tua ted  to  release gases formed due t o  
decomposition of p rope l l an t s ,  

3. The tank s t r u k t u r e  could be re in forced  f o r  t h e  
h igher  pressures  . 

The pressure  rise f o r  t h e  o the r  candidate  materials could 
be s u f f i c i e n t l y  l a r g e  t o  cause s t r u c t u r a l  damage. 
must be inves t iga ted  i n  more depth when materials are s e l e c t e d  
and t h e  p rope l lan t  s to rage  systems are designed, 

This problem 
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2.1.3 Formation of  Corrosive Products 

Nuclear r a d i a t i o n  causes  t h e  decomposition of organic  ex- 
p los ives  r e s u l t i n g  i n  t h e  production o f  r a d i o l y t i c  gases  and 
o t h e r  r e a c t i o n  products.  
propuls ion system, t h e s e  gases and r eac t ion  products  could  come 
i n t o  i n t i m a t e  c o n t a c t  w i th  seals, gaskets ,  and O-rings of  
Teflon TFE and FEP, Kel-F, Buna N ,  and Viton - A. However, tests 
performed a t  2OoC r e s u l t e d  mainly i n  t h e  formation o f  gases 
such as Ha, N2, N20, NO, CO, C02, and H2CO - none of which are 
co r ros ive  or harmful t o  organic  compounds. Although t h e  r ad ia -  
t ion-induced evolu t ion  of NO2 i s  t h e o r e t i c a l l y  p o s s i b l e  i n  
many cases and t h i s  gas and i t s  r e l a t e d  products  are o f t e n  cor -  
r o s i v e ,  only t h e  d a t a  on t h e  i r r a d i a t i o n  of PETN suggest  t h a t  
n i t r o g e n  d iox ide  is  produced (Ref. 4).  Inasmuch as a s p o t  test 
on i r r a d i a t e d  PETN gave a s t r o n g  ind ica t ion  of NO2 and/or NO;, 
t h i s  material should b e  regarded as a p o s s i b l e  source  of cor ro-  
s i o n  i n  materials t h a t  are a t tacked  by n i t r i c  acid. 

I n  systems such as t h e  a u x i l i a r y  

2.2 Radia t ion  Ef fec t s  T e s t  Data 

The explosives  i n v e s t i g a t e d  i n  t h i s  a n a l y s i s  are complex 
ni t rogen-containing organic  compounds w i t h  an inherent  high 
degree of cpemical i n s t a b i l i t y .  
has  been pqrformed t o  i n v e s t i g a t e  the effects of r a d i a t i o n  on: 

Considerable experimental  work 

1. 

2. 

3. 

4. 

5. 

6. 

7 .  

8. 

Gas evolu t ion ,  both during and a f t e r  i r r a d i a t i o n  

Peak p res su re  during detonzt ion 

Propagat ion  v e l o c i t y  

Impac t s ens i t  i v i  t y  

Melting po in t  

Auto- ign i t ion  temper a t  u r  e 

Weight l o s s  

Explosive power 

Most of t h e  experimental  d a t a  a r e  f o r  explosives  i r r a d i a t e d  
and t e s t e d  i n  a i r  a t  room temperature. 
ment would be much d i f f e r e n t ,  comments regarding t h e  l i m i t a t i o n s  

Since t h e  RNS environ- 

nF thn rl-t- m - 6  ; n n l n * A n A  ;n +ha f n l l n d n g  d i s c l l c s i n n s  
U L  L..b YCL'LU C i L L b  .L..-LUU'C.U LII --.- -----..--- ----I-- -----. 
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The Saturn V ordnance system uses PETN and RDX explosive 
materials. Four add i t i ona l  materials t h a t  are r ep re sen t a t i ve  
of explosives that '  could be used on t h e  RNS - TNT, HMX, DATB, 
and UDMH - have been included i n  t h e  study. 

Although 2,4 ,6  Tr in i t ro to luene  (TNT), which is  t h e  most 
widely used explosive,  is r e l a t i v e l y  r a d i a t i o n  r e s i s t a n t  and 
has been i r r a d i a t e d  and t e s t e d  by more experfmentors than any 
o ther  explosive material, it is doubtful  i f  TNT w i l l  be employed 
f o r  RNS app l i ca t i ons  due t o  improved c h a r a c t e r i s t i c s  possessed 
by o the r  explosives.  It i s  included pr imar i ly  f o r  purposes of 
comparison. 

ergs/gm(C) a t  several temperatures ranging between 230% and 
344% (Refs. 6 and 7). 
d i a t i o n ,  which, t o  a c e r t a i n  ex t en t ,  is  an i nd i ca to r  of decompo- 
s i t i o n ,  is  q u i t e  s m a l l  f o r  TNT when compared t o  o the r  explosive 
materials. Gas evolut ion,  which s tops  when i r r a d i a t i o n  is  
terminated, i s  shown i n  Figure 2 at  t h r e e  d t f f e r e n t  temperatures. 
These da t a  i l l u s t r a t e  t h a t  gas evolut ion  varies d i r e c t l y  wi th  
temperature, thus  implying even g r e a t e r  r a d i a t i o n  s t a b i l i t y  i n  
t h e  RNS environment than t h e  d a t a  below ind ica te .  

11 TNT has been i r r a d i a t e d  t o  exposures as high as 1 x 10 

The volume of gas evolved during irra- 

Although t h e  co lo r  of TNT changes considerably and minor 
changes occur i n  t h e  elemental composition of TNT as a r e s u l t  of 
i r r a d i a t i o n ,  it i s  bel ieved t h a t  TNT would be r e l a t i v e l y  un- 
a f f e c t e d  a t  t h e  maximum exposure a n t i c i p a t e d  f o r  components 
located  above t h e  reac to r /p rope l lan t  tank i n t e r f a c e ,  f o e . ,  
2 x lo9 ergs/gm(C). 
TNT as follows: 

A t  t h i s  exposure, nuclear  r ad i a t i on  a f f e c t s  

G a s  vo lu t ion  0.04 m l / g m  a t  230% and considerably 
less a t  RNS temperatures. 
t i o n  s tops  when i r r a d i a t i o n  is  
terminated. 

Gas evolu- 

Melting po in t  

Weight l o s s  

Impact 

Sand-t es t 

approximately 3OC decrease. 

less than 1%. 

s e n s i t i v i t y  c h a r a c t e r i s t i c s  r e l a t i v e l y  
unaffected . 
r e l a t i v e l y  unaffected.  
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Radiation e f f e c t s  test experience w i t h  TNT i s  summarized 
below: 

1. TNT i r r a d i a t e d  i n  a pure gamma environment t o  
1 x 10l1 ergs/gm(C) sh.owed a 1 7 O C  decrease i n  m e l t -  
ing po in t  and i t s  decomposition, as determined by 
chromalographic ana lys i s ,  amounted t o  approximately 
30% (Ref.  6). 

When i r r a d i a t e d  a t  room temperature t o  an exposure 
of 9 x lo9 ergs/gm(C), TNT exhib i ted  a 5OC decrease 
i n  melting po in t  and a weight loss of approximately 
1%; however, no decomposition products w e r e  noted 
during m e l t  tests ( R e f .  6). The decomposition exotherm 
showed a decrease of about 15OC a t  t h i s  exposure. 

2. 

3. TNT w a s  exposed t o  high r a d i a t i o n  f luxes  ( fas t- neutron 
f l u x  = 1 x 1017 n/cm2-sec and a gamma dose r a t e  of 
5 x 10 l2  ergs/gm(C)-h) during a 90-psec pulse  of t h e  
Godiva I1 reac tor .  Examination of t h e  sample showed 
n e g l i g i b l e  damage, and i n  p a r t i c u l a r  none of t h e  
samples exploded during i r r a d i a t i o n  (Ref. 4) .  

4. 'impact s e n s i t i v i t y  tests ind ica ted  a s1igh.t decrease 
i n  s e n s i t i v i t y  f o r  TNT i r r a d i a t e d  a t  210% and a 
s l i g h t  increase  f o r  t h a t  i r r a d i a t e d  a t  310%. 
height  of f a l l  r equ i red  f o r  detonat ion changed from 
150 em t o  160 c m  f o r  TNT i r r a d i a t e d  t o  2.4 x 1O1O 
ergs/gm(C) at  210%; when i r r a d i a t e d  t o  5 x 108 
ergs/gm(C) a t  210° and 310% t h e  impact d i s tances  
w e r e  166 and 144 cm,  r e spec t i ve ly  (Ref. 4). 

The 

5. The explosive power of TNT as measured by i t s  sand 
crushing a b i l i t y  ( t he  weight of sand crushed by a 
200-gm bomb) w a s  r e l a t i v e l y  unaffected a f t e r  an ex- 
posure of 2 x lolo ergs/-((=) (Ref. 7). 

A decrease i n  t h e  melting po in t  of 1.2OC a f t e r  an 
exposure of 2 x 1010 ergs/gm(C) ind i ca t e s  t h e  
presence of about 2 wt% of impurity formed as a 
r e s u l t  of i r r a d i a t i o n .  

6 .  



Pentaerythritoltetranitrate (PETN) is  a high explos ive  
which i s  employed throughout t h e  Saturn  V ordnance system. 
is used i n  s a f e t y  and arming devices ,  f u s e  assemblies,  and 
ordnance tees. 
PETN is regarded as one of t h e  most s t a b l e  organic esters of 
n i t r i c  ac id  and has a high v e l o c i t y  of detonat ion;  however, it 
i s  much less s t a b l e  than TNT, HMX, and DATB when evaluated on 
t3e b a s i s  of r a d i a t i o n  induced decomposition and gas evolution.  
Based on t h e  da t a  presented below, i t  is bel ieved t h a t  t h e  
c h a r a c t e r i s t i c s  of  PETN, when i r r a d i a t e d  t o  the maximum exposure 
p red ic ted  f o r  r e g i  ns above t h e  r eac to r /p rope l l an t  tank i n t e r -  

It 

It i s  a candidate  for similar RNS appl ica t ions .  

face, i .e , ,  2 x 10 ? ergs/gm(C), w i l l  be a f f e c t e d  as follows: 

Melting po in t  decrease by approximately 3OC. 

Weight l o s s  approximately 0,4%. 

G a s  evolut ion 0.5 ml/gm a t  290%; however, t h e  
volume of gas evolved by PETN could 
be considerably  less a t  t h e  RNS 
temperature. 

Impact s ens i-  r e l a t i v e l y  unaffected.  
t i v i t y  

Radiat ion effects test experience with PETN i s  summarized below: 

1. 

2. 

3.  

The da t a  i n  Table 2 i n d i c a t e  s i g n i f i c a n t  decreases 
i n  melt ing po in t  are experienced by PETN. 

The decomposition of  PETN increases  r ap id ly  with 
exposure as ind ica ted  by Table 3 ,  Based on d a t a  
concerning P e n t o l i t e  (50/50 mixture of  PETN and 
TNT), of f- gass ing is  bel ieved - t o  cont inue a f t e r  
termination of i r r a d i a t i o n .  

A chemical ana lys i s  of decomposition gases are 
presented i n  Table 4, 
products are considered co r ros ive  o r  presen t  any 
p o t e n t i a l  hazard t o  components l oca t ed  adjacent  
t o  PETN. However, a spo t  test of an i r r a d i a t e d  
sample gave a s t rong  ind ica t ion  of NO2 and/or NO;, 
which implies t h a t  i r r a d i a t e d  PETN may no t  be com- 
p a t i b l e  wi th  materials t h a t  are a t tacked  by n i t r i c  
ac id ,  

None of  these decomposition 



Table 2 

MnTING POINT OF IRRADIATED PETN 

Table 3 

GAS VOLUME AND WEIGHT LOSS OF IRRADIATED PETN 

I I 

*Irradiated at -800F 
I 

Table 4 

GAS COMPOSITION OF IRRADIATED PETN 

a5 x 10' ergs/gm(C) and 9 x 
b2 x 1O1O ergs/gm(C) and 5 x 1015 n/cd 

n/cm2 
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4, 

5. 

6. 

7.  

Impact s e n s i t i v i t y  tests performed on PETN ihd i -  
c a t ed  a s l i g h t  decrease i n  s e n s i t i v i t y  a f t e r  
i r r a d i a t i o n .  The drop-height d i s t ance  required  t o  
i n i t i a t e  detonat ion increased from 13.0 c m  t o  13.2 
c m  a f t e r  i r r a d i a t i o n  t o  5 x lo8 e r g s /  m(C) and t o  
13.8 cm a f t e r  i r r a d i a t i o n  t o  2.4 x lOf0 ergs/gm(C) 
(Ref.  4) .  

A f t e r  an exposure of 2 x 1015 n/cm2 (E >0.18 MeV) 
and 3 x lo9 ergs/gm(C), PETN l i b e r a t e d  r ed  fumes 
i nd i ca t i ng  NO2 during t h e  melting po in t  detennina- 
t i o n  (Ref. 6). 

Microscopic examinations of t h e  sample irra i a t e d  
t o  5.0 x lo8 ergs/-((=) and 8.7 x 1013 n/cm 
(E > 2.5 MeV) revealed only minor changes i n  co lo r  
o r  opaci ty  of t h e  c r y s t a l s ,  However, f o r  samples 
i r r a d i a t e d  t o  2.4 x 1010 ergs/gm(C) and 4.8 x 1015 
n/cm2 (E >2 ,5  MeV) t he  most prominent changes w e r e  
t he  changes i n  transparency of t h e  c r y s t a l s .  The 
o r i g i n a l  c r y s t a l s  were c l e a r  except f o r  gross  i m -  
per fec t ions  w h i l e  t h e  i r r a d i a t e d  c r y s t a l s  w e r e  w h i t e  
and opaque. 
t h e  c r y s t a l s  of these materials (Ref. 4 ) .  

I R  spec t r a  run on t h e  2.4 x 1O1O ergs/@((=) and 
4.8 x 1015 n/cm* specimens showed d i s t i n c t  changes 
after i r r a d i a t i o n  cons i s t i ng  of increased OH- 
s t r e t c h i n g  absorpt ion  and new bands i n  t h e  carbonyl 
region a t  5.75~ (Ref. 4 ) .  

9 

Numerous s m a l l  voids could be seen i n  

2.2.3 - RDX 

Cycle trime thylene t r i n i t r a m i n e  (RDX) is  employed throughout 
t h e  Saturn V ordnance system i n  exploding br idge  w i r e  (Em) 
detonators ,  l i n e a r  shaped charges,  and d e s t r u c t  assemblies. 
RDX is  considered t o  be a prime candidate  f o r  similar RNS func- 
t ions .  A t  t h e  maximum exposure p red ic ted  i n  regions above t h e  
reac to r /p rope l lan t  tank i n t e r f a c e  ( 2  x lo9 ergs/grn(C) ), it is 
estimated t h a t  RDX w i l l  be a f f e c t e d  as fol lows:  

12 I 



Melting po in t  decrease by approximately loco 
Weight l o s s  approximately -0.777. 

G a s  evolut ion  3 . 5  ml/gm at  18OC.  ( G a s  evolut ion  
should be considerably less i n  t h e  
RNS environment . ) 

Impact s ens i-  approximately 10% increase  i n  s ens i -  
t i v i t y  . t i v i t y .  

Radiation e f f e c t s  test experience with RDX is  summarized below: 

1. Data regarding t h e  e f f e c t s  of r a d i a t i o n  on t h e  
melting p o i n t ,  weight l o s s ,  and gas evolut ion are 
presented i n  Table 5, 

2. Various blends of RDX w i t h  Kel-F and TNT showed 
no evidence of any s n e r g i s t i c  e f f e c t  caused by 
h igh dose rates n/cm2 and 5 x 1012 ergs/gm(C)-h) 
during a 90-psec pulse  of t h e  Godiva r eac to r  (Ref. 4 ) .  

3.  In  one set of repor ted  r e s u l t s  f o r  -80°F and a t  
+lOO°F (Ref. 4 ) ,  t he  drop-weight impact sens i t j tv i ty  
decreased w i t h  increas ing r a d i a t i o n ,  r equ i r i ng  a 
drop height  of 29.4 cm f o r  detonat ion a f t e r  an 
exposure of 2.4 x 1 O l 0  ergs/gm(C) and 4.8 x 1015 
n/cm2 a t  -80°F as compared t o  a drop height  of 22,8 
cm f o r  t h e  un i r r ad i a t ed  material. However, i n  
o the r  experiments a t  ambient temperature (Ref. 7 

creases  of impact s e n s i ~ i v ~ ~ y  which var ied  from 10 
to 60%. 

a gamma exposure of 4.4 x 10 9 ergs/gm(C) caused in-  

4 .  
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5, The explos ive  power of  RDX as measured by t h e  sand 
test w a s  unchanged a f t e r  an exposure of 4.4 x lo9 
ergs/gm(C) (Ref . 7) .  

RDX evolved a very  s t rong  odor reminiscent of  a 
hydroxylamine d e r i v a t i v e  (Ref. 7). 

6 .  

7. A microscopic examination of i r r a d i a t e d  RDX showed 
t h e  same s t r u c t u r a l  changes, v i z . ,  numerous s m a l l  
voids ,  as repor ted f o r  PETN (Ref. 4) .  

On t h e  b a s i s  of maximum f r e e  energy charges, t h e  gamma 
i r r a d i a t i o n  of RDX might be expected t o  promote t h e  n e t  r eac t ion  

Th i s  r e a c t i o n  is  cons i s t en t  w i t h  t h e  fact t h a t  t h e  observed N 2  
y i e l d  (Ref. 4) is  about t w i c e  t h e  C02 y i e ld .  
represented by t h e  last  t e r m  on t h e  r i g h t ,  formaldehyde, tends 
t o  form s t a b l e  polymers and would not  show up s t rong ly  i n  t h e  
gas ana lys i s .  However, t h e  above r eac t ion  ind ica t e s  t h a t  N20 
would be evolved t o  about t w i c e  t h e  ex t en t  given i n  Table 5. 
It i s  the re fo re  poss ib l e  t h a t  RDX i r r a d i a t i o n  also leads  t o  
n e t  r eac t ions  such as 

The product 

and 

(CHZ)~ N ~ ( N O Z ) ~  +?'-(2N2 + C02 i- H20) + (CNOH + CO 4- NH2OH) 

Cyamelide, CNOH, forms a polymer which i s  a s t a b l e  s o l i d  a t  
ordinary  temperature. The lat ter  r eac t ion  would expla in  t h e  I 

appearance of CO and t h e  ind ica t ion  of hydroxylamine, NH2OH. 
The la t ter  compound m e l t s  a t  34OC, b o i l s  a t  l l O ° C  and explodes 
a t  13OoC. It is  the re fo re  conceivable t h a t  an accumulation of 
NH20H could inc rease  the impact s e n s i t i v i t y  of RDX i n  accord 
wi th  some of t h e  available da t a  (Ref. 7) .  
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I f  RDX w e r e  i r r a d i a t e d  at  cryogenic temperature it i s  con- 
ce ivab le  t h a t  a number of in termedia te  r eac t i on  products which 
lead t o  t h e  above n e t  reac t ions  a t  normal temperatures could 
be s t a b i l i z e d .  
p o t e n t i a l l y  explosive products such as 03, N2H4, and C2Hz-02 
mixture,  it  i s  doubtful  t h a t  t h e  concentra t ions  of t h e s e  would 
be l a r g e  enough t o  e f f e c t  a l a r g e  inc rease  i n  impact s e n s i t i v i t y .  
I n  t h e  case of ozone, f o r  example, it fs known t h a t  t h e  G-value 
f o r  r a d i a t i o n  induced des t ruc t i on  is over twice  as l a r g e  as t h e  
G-value f o r  ozone production (see Sec. 111). 

Although these in termedia tes  might inc lude  

2.2.4 - HMX 

Tetrani trooctahydro - 1,3,5,7 - t e t r azoc ine  (NMX) i s  a 
high explosive which has p o t e n t i a l  app l i ca t i on  i n  detonators  
and d e s t r u c t  assemblies.  
regions above the  r eac to r /p rope l l an t  tank i n t e r f a c e ,  2 x lo9 
ergs/gm(C), it is  bel ieved t h a t  WMX w i l l  be a f f ec t ed  as follows: 

A t  t h e  maximum exposure p red ic ted  i n  

Melting po in t  decrease by approximately 3OC. 

Weight loss approximately 0.6%. 

Gas evolut ion  0.3 ml/gm a t  18%; however, gas 
evolut ion  could be considerably 
less i n  t h e  RNS envtronment. 

Impact s ens i- not  a f f ec t ed .  
t i v i t y  

Radiat ion e f f e c t s  test experience wfth HMX and a mixture of 
HMX/EXON (95%/5%) i s  summarized below: 

1. 

2. 

Data regarding t h e  e f f e c t s  of r ad i a t i on  on the  
weight l o s s  and gas evolut ion are presented i n  
Table 6. 
r epor ted  f o r  t h e  i r r a d i a t i o n  of  HMX t o  2 x 1010 
ergs/gm(C) 

A decrease i n  melt ing po in t  of 9OC w a s  

The impact s e n s i t i v i t y  of HMX w a s  no t  a f f ec t ed  when 
i r r a d i a t e d  and t e s t e d  a t  5 x 108 ergs/gm(C) and 
a l s o  a t  2.4 x 1O1O ergs/gm(C); however, t h e  HMX/ 
EXON ( 9 4 / 6 )  material exh ib i ted  approximately a 
15% reduct ion i n  detonat ion s e n s i t i v i t y  a t  t h e  
higher  exposure . 
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3. HMX w a s  subjec ted  t o  h i  h r ad i a t i on  rates ( f a s t  
neutron f luences  of 101y n/cm2 and a gamma dose 
rate of 5 x 1012 ergs/gm(C)-h during a 90-psec 
pu l se  of t h e  Godiva r e a c t o r  with no evidence of 
any s y n e r g i s t i c  e f f e c t s  o r  r a d i a t i o n  induced 
detonat ions  (Ref. 4). 

4. Based upon chemical analyses,  etc., Ribaudo et a l .  
concluded t h a t  =/EXON is s l i g h t l y  more s t a b l e  
t o  r e a c t o r  i r r a d i a t i o n  than TNT o r  PETN (Ref. 6 ) .  

2.2.5 - DATB 

Diaminotrinitrobenzene (DATB), based upon a few i r r a d i a t i o n  
experiments performed t o  d a t e  (Ref. 6 ) ,  is t h e  most r a d i a t i o n  
r e s i s t a n t  explosive and has a high p o t e n t i a l  f o r  RNS appl ica-  
t ions .  
r eac to r /p rope l lan t  tank i n t e r f a c e ,  2 x lo9 ergs/gm(C), r a d i a t i o n  
should not  measurably a f f e c t  t h e  physica l  or chemical proper- 
t i e s  of DATB. 

A t  t h e  maximum exposure p red ic ted  i n  regions above t h e  

Radiat ion e f f e c t s  test experience with DATB i s  as follows: 

1. After  an exposure of 2 x 1O1O ergs/gm(C) and 2.0 x 
1016 n/cm2 (E >0.18 MeV),  t h e  weight l o s s  w a s  about 
0.2%, t h e  melt ing po in t  decreased by 2OC, and t h e r e  
w a s  some evidence of decompo i t i o n ;  a t  9 x 1010 
ergs/gm(C) and 1 x 1017 n/cm 
weight loss w a s  0.7% and t h e  melt ing po in t  decreased 
by about 4OC.  

1 (E >0.18 MeV),  t h e  

2. I n f r a r ed  s p e c t r a  f o r  i r r a d i a t e d  DATB samples show 
no evidence of decomposition and x-ray d i f f r a c t i o n  
da t a  do not  i n d i c a t e  any s o l i d  decomposition 
products.  

2.2.6 UDMH 
_I_ 

Unsymmetrical dimethylhydrazine, NH2N(CH3)2, has been irra- 
The composition 

On t h e  b a s i s  

d ia ted  t o  a dose of 1 x lo9 ergs/gm(C) (Ref. 5). 
of t h e  p rope l lan t  w a s  no t  s i g n i f i c a n t l y  a f f ec t ed  by t h i s  expo- 
su re ,  although H2, N 2 ,  and CHq gases were evolved. 
of pressure  rise, it i s  est imated t h a t  t h e  t o t a l  gas  evolut ion  
f o r  t h i s  exposure w a s  2.0 m l / g m .  
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111. EFFECTS OF RADIATION ON BIFUELS 

The RNS system w i l l  r e q u i r e  an a u x i l i a r y  propulsion system 
for :  
t h e  r o l l  a x i s ,  (2) veh ic l e  a t t i t u d e  c o n t r o l  i n  t h e  p i t c h  yaw 
and r o l l  axes during coas t  per iods ,  and (3) t h r u s t  t o  settle 
main s t a g e  p rope l l an t s  both before  and after each main engine 
operat ion.  

(1) v e h i c l e  a t t i t u d e  c o n t r o l  during powered f l i g h t  i n  

Conceptual designs f o r  t h e  APS include an APS similar t o  
t h a t  p r e sen t ly  employed f o r  t h e  S-IVB s t a g e  of t h e  Saturn V 
veh ic le ,  i .e. ,  two modules loca ted  180 degrees a p a r t  on t h e  
a f t  end of t h e  veh ic l e ,  each conta ining four  hypergolic engines,  
three 150-lb t h r u s t  a t t i t u d e  engines, and one 70-lb t h r u s t  
u l l age  engine. Each APS module conta ins  i t s  own prope l lan t  
supply and p re s su r i za t ion  system. The hypergolic p rope l l an t s  
used by t h e  engines are monomethylhydrazine (MMH) f o r  t h e  f u e l  
and n i t rogen  t e t r o x i d e  (N2O4) f o r  t h e  ox id izer .  Helium is t h e  
pressurant  used i n  t h e  system. 

The Saturn  V gas generat ion system, which i s  a hypergolic 
fueled engine, produces gases f o r  s t a r t i n g  the turbopumps as 
w e l l  as pressur iz ing  t h e  hydraul ic  system re se rvo i r  and valve/  
seal system. A similar system could be employed i n  t h e  RNS f o r  
p ressur iz ing  t h e  hydraul ic  and pneumatic systems as w e l l  as 
being a backup system f o r  p re s su r i z ing  t h e  LH2 tanks i f  t h e  
bo i l- of f  rate is less than required,  

A r a d i a t i o n  hardening ana lys i s  f o r  a l l  r a d i a t i o n  s e n s i t i v e  
materials, components, and systems which might be employed i n  
such RNS app l i ca t ions  - excluding t h e  p rope l l an t s  and s o l i d  
motors - i s  presented i n  Reference 1. The effects of r a d i a t i o n  
on some b i f u e l s  t h a t  might be used f o r  a u x i l i a r y  power are dis- 
cussed below. 

Of b i f u e l s  t h a t  have been considered f o r  secondary propul-  
s ion  app l i ca t ions ,  t h e  gaseous 02/H2 combination has received 
t h e  most a t t e n t i o n  i n  regard t o  app l i ca t ion  on t h e  nuclear  
s tage.  The advantages of t h i s  system are reasonable performance, 
absence of i g n i t i o n  problems, and a well-developed Apollo-based 
technology. However, the p re fe r r ed  method of s to rage  of these  
components, v iz . ,  s u p e r c r i t i c a l  s to rage ,  requi res  super insula ted 
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s to rage  tanks and a series of hea t  exchangers, and gas genera tors  
t o  maintain tank p ressure  during t h e  mission. It is the re fo re  
conceivable t h a t  another  combination of oxidiz ing and reducing 
agents  might be used, e.g., n i t rogen  t e t r o x i d e  and monomethyl- 
hydrazine, o r  n i t rogen  t e t rox ide  and hydrazine. 

The combinations of oxidiz ing and reducing agents  c i t e d  
above could be s to r ed  s epa ra t e ly  and employed as t r u e  b i f u e l s ,  
o r  they could be s t o r e d  i n  combination as hypergolic monofuels, 
Unfortunately,  no i r r a d i a t i o n  data are a v a i l a b l e  f o r  hypergolic  
mixtures of oxidiz ing and reducing agents.  It i s  q u i t e  pos s ib l e  
t h a t  t h e  e f f e c t s  o f  r a d i a t i o n  on such mixtures could inc lude 
spontaneous detonat ion.  Since n i t r i c  oxide (NO) is probably 
a decomposition product i n  t h e  i r r a d i a t i o n  of N 04 and s i n c e  

ence of NO (Ref, 9 ) ,  i t  i s  reasonable t o  expect t h a t  t h e  i g n i t i o n  
temperature of a NzOlc/hydrazine mixture might be d r a s t i c a l l y  
lowered by i r r a d i a t i o n ,  e spec i a l l y  i f  NH and NH2 r a d i c a l s  were 
produced i n  add i t i on  t o  NO. 

even as s t a b l e  a compound as ammonia burns easi I y i n  t h e  pres-  

I n  t h e  following discuss ion,  t h e  e f f e c t s  of r ad i a t i on  on 
pure  oxidiz ing and pure reducing agents  a r e  considered separa te ly .  
Reducing agents  are discussed f i r s t .  

3.1 Reducing Ag en t  s 

3.1.1 Hydrogen 

The i r r a d i a t i o n  of hydrogen produces r a d i c a l s  such as H 
and H which recombine r ap id ly  t o  form H2 molecules, Althoug 
some evidence e x i s t s  f o r  a r e l a t i v e l y  long- lived H3 state i n  
i r r a d i a t e d  l i q u i d  hydrogen (Ref. lo), t h e r e  i s  no d i r e c t  experi-  
mental evidence that t h e  energy s to red  i n  t h i s  way is  s i g n i f i -  
cant.  It i s  pos s ib l e  t h a t  spec ies  such as H or  H3 could c a r r y  
over t o  an 02/H2 mixture and thereby lower t h e  i g n i t i o n  tempera- 
t u r e  by acce l e r a t i ng  t h e  production of H02 r a d i c a l s ,  which 
process determines the i g n i t i o n  po in t ,  but such an e f f e c t  would 
not  c o n s t i t u t e  a problem. 

+ 
6 

3 , 1.2 Hydrazine 

The r a d i a t i o n  induced decomposition of s o l i d  hydrazine a t  
l i q u i d  n i t rogen temperature has been inves t iga ted  using 20-keV 
e l ec t rons  and ions  of undetermined energy (Ref. 11). A stepwise 
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evolut ion of H2,  N 2 ,  and NH2 was  noted during warmup of t h e  
i r r a d i a t e d  samples, the appearance temperatures being 113% 
f o r  H2 and N 2  and 146OK f o r  "2. The r e s u l t s  ind ica ted  t h e  
presence of t r i a z e n e  which decomposed according t o  

H2-N-N 3 N-H-NH3 + N2 

I r r a d i a t i o n  of l i q u i d  hydrazine t o  1 x 109 ergs/gm(C) w i t h  Co60 
gamma rays  (Ref. 5) r e s u l t e d  i n  t he  evolut ion  of N 2  and H2 
gases.  On t h e  b a s i s  of t h e  observed pressure  rises it is in-  
f e r r e d  t h a t  t h e  t o t a l  gas evolut ion  w a s  about 1 .5  m l / g m .  
According t o  these r e s u l t s ,  there is no reason t o  expect t h a t  
t h e  i r r a d i a t i o n  of N2Y4 t o  2 x lo9 ergs/gm(C) o r  less w i l l  
have det r imenta l  e f f e c t s  on i t s  use as a reducing agent.  

3.1.3 Monomethvlhvdrazine 

No da t a  are ava i l ab l e  on t h e  e f f e c t s  of r ad i a t i on  on mono- 
inethylhydrazine. This  compound. NH3NHCH3, is expected t o  be 
s l i g h t l y  less s t a b l e  than t h e  dimethyl compound UDMH (see Sec. 
2.2.6), v iz . ,  H2,  N2 and CH4. 
f i c a n t  de rada t ion  of monomethylhydrazine is  expected f o r  doses 

A s  i n  t h e  case  of UDMH, no s i g n i -  

of 2 x 10 8 ergs/gm(C) o r  less. 

Only two ox id iz ing  agents  are expected t o  be considered 
f o r  use  w i t h  t h e  above reducing agents.  
t e t r o x i d e  and l i q u i d  oxygen. 

These are n i t rogen  

3.2 Oxidizing Agents 

3.2.1 Nitrogen Tetroxide 

Nitrogen t e t r o x i d e  is t h e  dimer of NO2 t o  which it p a r t l y  
d i s s o c i a t e s  i n  t h e  gas phase. F i s s ion  fragment i r r a d i a t i o n s  
of t h e  monomer have revealed (Ref. 12) an unusual mode of de- 
composition, aamely, t h a t  t h e  G-value f o r  NO2 des t ruc  ion varies 
from G = 0.5 molecules pe r  100 e V  a t  a dose of 5 x los ergs/gm(C) 
t o  G = 1.2 molecules per  100 e V  at a dose of 3 x l o l l  ergs/gm(C). 
The explanat ion of t h i s  e f f e c t  is t h a t  a f t e r  long exposures t h e  
NO 

r e a c t  ions  ax  e : 

starts t o  be "au toca ta ly t ica l ly ' '  decomposed by t h e  r a d i a t i o n  
i n  3 uced secondary decomposition of i ts  products.  The assumed 

+ 
NO, + E - t N 0 2  -f- eo 

NO; + e--+NO -t 0 

& 
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NO; + e 0 - N  + 20 

NO2 + N + N 2 0  + 0 

The r a d i a t i o n  products are t he r e fo r e  NO, N 2 ,  02 and N 2 0 .  
last  t h r e e  products w e r e  a l s o  evolved from neutron i r r a d i a t e d  
NO2 (Ref. 13) i n  t h e  proport ions N 2 : 0 2 : N 2 0  = 1:l:z. 

These 

I r r a d i a t i o n  of N 2 0  i n  t h e  l i q u i d  phase t o  a dose of 
1 x lo9 ergs/gm(C) (C066 gamma rays )  r e s u l t e d  i n  t h e  evolu t ion  
of NO and N 2 0  gases with only  s l i g h t  decomposition of t h e  
sample (Re f .  5). But i n  another  i r r a d i a t i o n  of N2O4 by g a m a  
rays ,  t h e  evolved products were found t o  be N2 and N 2 0  i n  t h e  
proport ions N2:N20 = 2:l  (Ref. 14). 

G = 0.075 molecules/100 eV. 
found t h a t  t h e  des t ruc t ion  of N 2 0 4  due t o  a gama  r ay  dose of 
2 x lo9 ergs/gm(C) would only amount t o  about 0.01%. 

The G-value f o r  N 2 0  

On t h e  b a s i s  of t h i s  G-value, it is 
des t ruc t ion  i n  t h e  latter experiments w a s  found t o  be on 4 y 

3.2.2 Liquid Oxygen 

The exposure of l i q u i d  oxygen and LOz-LNz mixtures t o  ion iz-  
ing r a d i a t i o n  has long been known t o  produce ozone. 
c u l a r  y i e l d s  of 03 produced by t h e  i r r a d i a t i o n  of l i q u i d  oxygen 
have been inves t iga ted  by Brown and Wall (Ref. 15) ,  who found 
that t h e  03 y i e l d  f o r  eo60 g a m a  rays  i s  about Gp = 6 molecules 
pe r  100 eV. They a l s o  determined t h a t  r a d i a t i o n  d w y s  ozone 
molecules with a G va lue  of GD = 26 molecules per  100 eV deposi ted 
i n  t he  ozone f r a c t i o n  of an LO2-LO3 so lu t ion .  
i t  can be shown t h a t  t h e  ozone concent ra t ion  i n  l i q u i d  oxygen 
a f t e r  an i r r a d i a t i o n  t i m e  t i s  

The mole- 

From these r e s u l t s  

n = [l - exp (-4.8 x G&)] 
48 GT) 

where 
n = number of moles of ozone per  cm3 

P = dens i t y  of LO2 (gm/cm3) 

E = dose rate (ergs/gm(C)-h) 
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From t h e  above values  i t  i s  found t h a t  t h e  l i m i t i n g  ozone con- 
c e n t r a t i o n  f o r  any dose rate level is 

2 3 = 0.00442 moles/cm 
noo. 48 GI) 

This value  represen t s  an ozone f r a c t i o n  of about 14% i n  t h e  LO2- 
LO3 so lu t ion .  
phase l i q u i d  a t  an ozone l e v e l  of about 12%, thereby forming a 
highly explosive ozone-rich phase (Ref. 16) . 

Actual ly t h e  so lu t i on  would separate i n t o  a two- 

However, f o r  a maximum dose of only k t  = 2 x I O 9  
ergs/gm(C) t h e  time dependent equation shows t h a t  n = 1.1 x loo4, 
corresponding t o  an ozone f r a c t i o n  of only 0.35%. 
value i s  w e l l  below t h e  explosive l i m i t  f o r  ozone-oxygen mixtures,  
i t  can be concluded t h a t  use of l i q u i d  oxygen as one component 
of a b i f u e l  cannot l ead  t o  an ozone explosion i n  RNS appl ica-  
t i o n s  . 

Since t h i s  
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IV . CONCLUSIONS 

9 It is  concluded t h a t  f o r  t h e  2 x 10 ergs/gm(C) maximum 
dose expected i n  RNS app l i ca t ions :  

1. 

2. 

3 .  

4 .  

I n  

None of t h e  explos ive  o r  pyrotechnic materials 
considered f o r  RNS app l i ca t ions  w i l l  explode. 

None of the materials considered w i l l  undergo an 
apprec iab le  reduct ion i n  impact s e n s i t i v i t y  o r  
explos ive  power ( t h e  impact s e n s i t i v i t y  of RDX 
may inc rease  by about 10%). 

All of t h e  materials considered can be expected 
t o  evolve s t a b l e  gases at  l e v e l s  ranging from 
0.04 ml/gm f o r  TNT t o  4 ml/gm f o r  UDMH; adequate 
allowance f o r  poss ib l e  p re s su re  rises accompanying 
such evolut ion must be made by t h e  i n s t a l l a t i o n  
of ven ts  o r  by r e in fo rc ing  t h e  tank s t r u c t u r e s .  

Corrosive r a d i a t i o n  products are expected only i n  
t h e  case of PETN; i r r a d i a t e d  PETN may be incom- 
p a t i b l e  w i t h  materials t h a t  are a t tacked  by n i t r i c  
acid .  

regard t o  t h e  e f f e c t s  of a 2 x lo9 ergs/gm(C) dose 
on t h e  oxidiz ing and reducing agents  which may be considered 
f o r  b i f u e l s ,  i t  i s  concluded t h a t :  

5. None of t h e  candidate  materials w i l l  be degraded 
s i g n i f i c a n t l y  . 

6. I n  t h e  case of l i q u i d  oxygen, a p o t e n t i a l l y  
explos ive  compound, namely ozone, w i l l  be produced, 
bu t  t h e  ozone/oxygen ra t io  w i l l  be w e l l  below t h a t  
corresponding t o  separa t ion  i n t o  two l i q u i d  phases 
and no explosion can occur. 

133 

6 



APPENDIX A 

RADIATION EFFECTS ANALYSIS OF NON-EXPLOSIVE 
MATERIALS I N  SATURN V ORDNANCE SYSTEMS 

Components and systems of  t h e  S - I 1  s t a g e  of t h e  Saturn V 
vehicle which conta in  pyrotechnic materials were s e l e c t e d  as 
reference  systems f o r  ana lys i s  s i n c e  they are r e p r e s e n t a t i v e  
of systems envisioned f o r  l i q u i d  hydrogen fue led  v e h i c l e s  . 
The purpose of t h i s  ana lys i s  w a s  t o  determine those components 
which can be used as designed, o r  present  t h e  modifications 
necessary t o  r a d i a t i o n  harden them f o r  analogous RNS appl ica-  
t ions .  

Ordnance systems t h a t  are used on t h e  S-11 s t a g e  of t h e  
Saturn V have been i d e n t i f i e d  and analyzed t o  determine t h e  
e f f e c t s  of r a d i a t i o n  on t h e  non-explosive c o n s t i t u t e n t s  of these  
components. 

A . l  Radiat ion Hardening Procedures 

The a n a l y s i s  of t h e  non-explosive r a d i a t i o n  s e n s i t i v e  
materials i s  b a s i c a l l y  an extension of  work previously repor ted  
i n  Reference 1, which analyzed t h e  e f f e c t s  of r a d i a t i o n  on 
mechanical components of t h e  S-I1 and S- IVB s t ages  of Saturn V. 
The r a d i a t i o n  hardening procedures employed, which are t h e  same 
as those  descr ibed i n  Reference 1, are summarized below: 

1. 

2. 

3. 

S-I1 s t a g e  assembly drawing V7-000002-2691 w a s  
examined. A l l  components and systems containing 
explosive materials w e r e  i d e n t i f i e d  and s e l e c t e d  
f o r  d e t a i l e d  inves t iga t ion .  

The r a d i a t i o n- s e n s i t i v e  materials contained i n  
each s e l e c t e d  system and t h e i r  app l i ca t ions  were 
i d e n t i f i e d .  

Each of t h e  materials i d e n t i f i e d  i n  s t e p  2 (except 
t h e  explosives)  had previously been inves t iga ted  
( R e f .  1). The recommended r a d i a t i o n  to le rance  
l i m i t s  (Table A- 1),  i .e. ,  t h e  maximum r a d i a t i o n  
exposure t o  which t h e  material, when employed in  a 
p a r t i c u l a r  app l i ca t ion ,  can be exposed without in-  
cur r ing  s i g n i f i c a n t  degradation i n  i t s  phys ica l  o r  

determined i n  Reference 1. 
mechanical p roper t i e s  are i d e n t i c a l  w i th  those - 
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Table A-1 

RECOMMENDED RADIATION TOLERANCES FOR ORGANIC 
MATERIALS I N  S-I1 ORDNANCE SYSTEMS 

Material 

Diallyl Phthalate 

EPOXY 

Mylar 

Nylon 

Polysulfide Rubber 

Polyurethane 

Polyolefin, Irradiated 

Polyvinylch loride 

Silicone Rubber 

Teflon TFE 

Application 

Insulation, electrical 

Adhesive 
Potting 

Insulation, e lectrical  

Fabric, tape 

Adhesive 

Insulation 

Tubing 

Sleeving 

O-ring 
Insulation, e lectrical  
Spacer, tubing, pottin 

Adhesive 
molding 

Backing strip 
Insulation, e lectrical  
Washer 

Recorn. Tolerancg 
(ergs/gm(C)) 

2 x 1o1O 

1 x 1010 
2 x 1010 

8 x lo8 
1 109 

2 lo9 
1 x 1010 

5 107 
1 x 108 
1 x 108 

, 
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4 .  

5 .  

6. 

Each component o r  subsystem analyzed w a s  examined 
with respec t  t o  i t s  relative placement i f  i t  were 
u t i l i z e d  on t h e  RNS. 
ment of  each Saturn V component and system w a s  de- 
termined by superimposing t h e  assumed loca t ions  of 
each component onto t h e  pred ic ted  RNS r a d i a t i o n  
f l u x  p r o f i l e  shown i n  Figure  A-1. 

The p red ic ted  nuclear  environ- 

The recormnended l i m i t  f o r  each component w a s  es tab-  
l i s h e d  by t h e  lowest recommended r a d i a t i o n  t o l e r -  
ance of material app l i ca t ions  c r i t ica l  t o  f l i g h t  
s a f e t y  o r  t h e  func t iona l  performance of t h e  speci-  
f i c  component. 

The recommended to le rance  f o r  eachaomponent w a s  
then compared t o  t h e  p red ic ted  nuclear  environment. 
I f  t h e  to le rance  exceeded t h e  predic ted environ- 
ment by a f a c t o r  of  t en  o r  more, it w a s  considered 
s u i t a b l e  f o r  t h e  app l i ca t ion  under i nves t iga t ion  
and no add i t i ona l  ana lys i s  w a s  performed. 
recommended to le rance  w a s  a t  least as g r e a t  as t h e  
p red ic ted  environment but  exceeded i t  by less than 
a f a c t o r  of 10,  a r a d i a t i o n  hardening procedure w a s  
considered des i rab le .  Radiat ion hardening w a s  con- 
s ide red  mandatory f o r  a l l  c r i t i c a l  app l i ca t ions  i f  
t h e  recommended to le rance  d id  no t  m e e t  t h e  p red ic ted  
environment. Modifications were recommended f o r  
both c r i t ica l  and n o n- c r i t i c a l  app l i ca t ions ;  however, 
t h e  assigned c l a s s i f i c a t i o n  f o r  n o n- c r i t i c a l  app l i -  
ca t ions  i s  denoted " non- cr i t ica l ."  

I f  t h e  

The assumptions used i n  t h i s  ana lys i s  r e s u l t  i n  what is  
probably a worst-case s i n c e  t h e  maximum r a d i a t i o n  l e v e l s  (un- 
a t tenua ted)  f o r  10 hours of engine operat ion were used, and t h e  
recommended r a d i a t i o n  to lerances  f o r  each material app l i ca t ion  
w e r e  chosen t o  be conservative.  

The ana lys i s  is  assumed t o  be unaffected by t h e  t i m e  se- 
quence i n  which t h e  t o t a l  dose is  applied.  
s h o r t e r  operat ing t i m e s  o r  d i f f e r e n t . r e a c t o r  power levels can 
be evaluated simply by sca l ing  down t h e  given doses. 
course,  ignores t h e  p o s s i b i l i t y  of more se r ious  adverse e f f e c t s  
r e s u l t i n g  from per iod ic  engine operat ion spread over a per iod 
o f ,  say,  t h r e e  years. It can be presumed t h a t  material degra- 
da t ion  r e s u l t i n g  from o the r  environmental o r  opera t iona l  f a c t o r s  

The e f f e c t s  of 

This,  of 
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Explosive Materials 

137 

c 



* would act i n  add i t i on  t o  t h e  r a d i a t i o n ,  but  t h e  consequences 
of c y c l i c  operat ion are l a r g e l y  unexplored, However, r a d i a t i o n  
induced changes i n  organic materials are i r r e v e r s i b l e  and 
annealing does not  occur, so i n  t h i s  r e spec t  t h e  assumption of 
accumulation of dose i s  va l id .  Also, vacuum and cryotempera- 
t u r e  alter (usua l ly  favorably) t h e  r a d i a t i o n  response o f  some 
organic materials. 

Radiat ion hardening w a s  accomplished pr imar i ly  through 
material s u b s t i t u t i o n ,  i .e , ,  rep lac ing  t h e  r a d i a t i o n  s e n s i t i v e  
materials which have low recommended to le rances  with r a d i a t i o n  
s t a b l e  materials have mechanical p rope r t i e s  thought t o  be 
compatible wi th  t h e  requirements of t h e  p a r t i c u l a r  app l i ca t ion ;  
however, it i s  recognized t h a t  redesigning a component w i t h  new 
materials t o  have t h e  same operat ing c h a r a c t e r i s t i c s  and s i z e  
envelope as o r i g i n a l l y  designed may no t  be easy. Material pro- 
ces s ing  techniques,  which may have been t h e  c r i t e r i a  employed 
i n  t h e  o r i g i n a l  material sec t ion ,  might prevent  usage of 
materials se l ec t ed  on t h e  bas i s  of  r a d i a t i o n  s t a b i l i t y .  Engi- 
neering judgment w a s  t h e  bas i s  f o r  recommended material s u b s t i -  
t u t i o n s ;  however, t h e  component o r  material might be required 
t o  s a t i s f y  a unique design o r  system requirement,  Therefore, 
component des igners ,  f ami l i a r  w i t h  a l l  design aspec ts ,  must 
examine t h e  recommended design modif ica t ions  and i n  some ins tances  
must select a l t e r n a t e  materials. 

A.2 Radiation Environment 

The nuc lear  r a d i a t i o n  environment employed i n  t h i s  a n a l y s i s ,  
Figure A l l ,  i s  from Reference 1. It w a s  based upon an extrapo- 
l a t i o n  of da t a  f o r  t h e  1575-MW NERVA-I fu l l- f low engine (Ref .  
1 7 )  assuming a t o t a l  of 10 hours of full-power engine operat ion.  
The r a d i a t i o n  f l u x  da t a  are unattenuated (by f u e l  o r  s t r u c t u r e ) ,  
thus providing add i t i ona l  conservatism i n  t h e  ana lys i s ,  

A.3 S-V Ordnance System Components 

Table A-2 l is ts  t h e  r a d i a t i o n  s e n s i t i v e  components contained 
i n  t h e  S-I1 s t a g e  ordnance system. 
t o l e r ance  l i m i t s  f o r  a l l  material app l i ca t ions  (except explosive 
materials) are based upon l i m i t s  e s t ab l i shed  i n  Reference 1. 
These a n c i l l a r y  materials and components can be r a d i a t i o n  hardened 
by t h e  modificat ions recommended i n  Table A-3 such t h a t  r e l i a b l e  
performance of these  non-explosive materials and components can 
be expected a t  gamma exposures up t o  1 x 1O1O ergs/gm(C). 

The recommended r a d i a t i o n  
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FOREWORD 

The test  described i n  t h i s  r epo r t  i s  a p a r t  of t h e  tech-  

nology s t u d i e s  conducted a t  t h e  Nuclear Aerospace Research 

F a c i l i t y  i n  support  of nuclear  rocket  development. 

a r t ic le ,  a polyurethane foam insu l a t ed  tank (5400-gal RIFT-niodel 

The test 

tank) had o r i g i n a l l y  been prepared by MSFC f o r  an i r r ad5a t ion  

test  w i t h  l i q u i d  hydrogen. However, subsequent events precluded 

t h e  use of t h e  Aerospace Systems T e s t  Reactor f o r  performing 

t h e  i r r a d i a t i o n .  Therefore, t h e  various materials and devices,  

o the r  than t h e  foam i n s u l a t i o n ,  which had been scheduled as an 

i n t e g r a l  p a r t  of t h e  RIFT tank test  w e r e  i r r a d i a t e d  by means of 

t h e  Ground T e s t  Reactor.  The ob jec t ives  of these  tests were m e t  

and are repor ted  i n  General Dynamics r e p o r t s  FZK-372 (pressure  

t ransducers ) ,  FZK-386 ( l i qu id- l eve l  sensors  and f i s s i o n  thermo- 

p i l e s ) ,  and FZK-387 (valve-seal materials). 

The foam thermal i n s u l a t i n g  material,  CPR 285-2, had been 

i r r a d i a t e d  and t e s t e d  previously  on a smaller l i q u i d  hydrogen 

tank,  and although t h e  l a r g e r  tank could no t  be i r r a d i a t e d ,  

as decided h a t  a u se fu l  test  would be h e  the rmal  cyc l ing  

of  t h e  l a r g e  insu la ted  cryogen tank t o  eva lua te  t he  a b i l i t y  of 

t h e  foam t o  r e t a i n  t t s  i n t e g r i t y  under t h  ss of thermal 
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and p re s su r i za t ion  cycl ing.  

t o  f i v e  f i l l ,  d r a i n ,  and warmup cyc les  using l i q u i d  n i t rogen  

as t h e  cryogen. Temperature, b o i l o f f ,  and s t r a i n  measurements 

w e r e  used t o  a i d  i n  t h e  evaluat ion.  

The tank w a s  t he re fo re  subjected 
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SUMMARY 

A 5400-gal RIFT-model tank (9- f t  diameter and 15- ft  height  
4 

with a conica l  bottom) in su l a t ed  with a 2-in.- thick l a y e r  of 

sprayed-on polyurethane foam i n s u l a t i o n  has been thermal  cycled 

with l i q u i d  ni t rogen.  Five f i l l ,  d r a in ,  and warmup cyc l e s  w e r e  

conducted over a period of about a month. During each f i l l  w i t h  

LN2, temperatures were measured a t  several levels i n  t h e  insu la-  

t i o n  and t h e  tank w a s  pressur ized t o  a maximum of 27 p s i .  

Although t h e r e  w a s  considerable  wrinkl ing and puckering of 

t h e  o u t e r  g l a s s  c l o t h  covering over t h e  foam during t h e  f i l l  

cyc les ,  there  w a s  no evidence, e i t h e r  v i s u a l  o r  from temperature 

da t a ,  t h a t  t h e  i n su l a t i on  w a s  damaged o r  i t s  e f f ec t ivenes s  i m -  

paired.  The measured bo i lo f f  rate w a s  approximately 22 g a l  LN2 

per hour and t h e  computer thermal  conduc t iv i ty  w a s  0.014 Btu/h- 

ft-OF. 

Data from s t r a i n  gages mounted i n t e r n a l l y  on t h e  tank w a l l  

ind ica ted  t h a t  s t r a i n s  w e r e  w i th in  expecta t ions  during t h e  pres-  

su re  cyc les .  

t h e  i n s u l a t i o n  tended t o  have l a r g e  v a r i a b i l i t y ,  genera l ly  going 

from l a r g e  p o s i t i v e  values  t o  l a r g e  nega t ive  values  during t h e  

d i f f e r e n t  cyc les .  This is  probably a r e f l e c t i o n  of t h e  cons 

Data from gages mounted on t h e  ou te r  su r f ace  of 

s ide rab le  movement t h a t  obviously occurred due t o  t h e  lowering 
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of  t h e  p ressure  and p a r t i a l  condensation of  t h e  f reon gas i n  

t h e  foam. 
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I. INTRODUCTION 

A test  has been performed i n  which a 5400-gal RIFT-model 

tank in su l a t ed  w i t h  sprayed-on polyurethane foam has been 

subjected t o  f i v e  f i l l - and- dra in  cyc les  w i t h  l i q u i d  ni t rogen.  

Temperatures w e r e  measured a t  s eve ra l  depths i n  t h e  2- in .- thick 

foam and s t r a i n  w a s  measured during p re s su r i za t ion  cycles  w i t h  

t h e  tank f i l l e d  w i t h  l i q u i d  ni t rogen.  

t i o n  t o  withstand repeated t h e r m a l  cyc les  without s e r ious  l o s s  

of e f f ec t ivenes s  w a s  then evaluated.  

The a b i l i t y  of t h e  insu la-  

The  i n s u l a t i o n  system cons i s ted  of  a Z-in.-thick l aye r  

of CPR 385-2 polyurethane foam enclosed i n  g l a s s  c l o t h  impreg- 

nated wi th  Narmco 7343 urethane adhesive and overcoated w i t h  

Staco No. 1024 w h i t e  epoxy enamel. T h i s  i n s u l a t i o n  system had 

been se l ec t ed  on t h e  b a s i s  of an i r r a d i a t i o n  tes t  previously  

conducted a t  General Dynamics. 

i n .  cube) conta ining l i q u i d  hydrogen v e r i f i e d  t h e  r a d i a t i o n  

The i r r a d i a t i o n  of a tank (30-  

s t a b i l i t y  of t h e  foam. The following is a summary of r e s u l t s  

taken from Reference 1: 

A tank (Cube B) i n su l a t ed  w i t h  urethane spray foam 
(CPR 385-2) has been i r r a d i a t e d  whi le  f i l l e d  with 
l i q u i d  hydrogen, subjected t o  s i x  l -h  p o s t i r r a d i a t i o n  
acous t ic  v i b r a t i o n  tests whi le  f i l l e d  wi th  l i q u i d  
n i t rogen ,  and f i n a l l y  given nine  thermal  cyc les  wi th  
l i q u i d  hydrogen. The i r r a d i a t i o n  w a s  made w i t h  t h e  
Ground T e s t  Reactor w i t h  t h e  maximum exposure t o  t h e  



i n s u l a t i o n  being a gamma dose of 2 x 1O1O ergs/g(C) 
and a neutron f luence  of 2.3 x 
MeV) .  The p r i n c i p a l  r e s u l t s  w e r e :  

n/cm2 (E >1.0 

. No detonat ions  occurred during t h i s  t es t ;  t h i s  
i s  i n  c o n t r a s t  wi th  t h e  earlier Cube A experiment 
during which two detonat ions  occurred i n  t h e  cork- 
board i n s u l a t i o n  of t h a t  tank. 

. The tank withstood t h e  i r r a d i a t i o n  and p o s t i r r a d i a-  
t i o n  tests  wi th  a probable maximum inc rease  of 35% 
i n  t h e  thermal conduc t iv i ty  of t h e  i n s u l a t i o n  
system. 

. Separat ion of  t h e  vapor b a r r i e r  from t h e  foam 
insu l a t i on  w a s  observed a t  one of t h e  faces  ex- 
posed d i r e c t l y  t o  t h e  acous t ic  horn a f t e r  t h e  
t h i r d  LH2 cyc l e  following t h e  i r r a d i a t i o n  and 
acous t ic  v i b r a t i o n  tests ,  Post- tes t  examination 
a l s o  revealed damage t o  t h e  foam i n s u l a t i o n  and 
separa t ion  of a small s ec t ion  from t h e  aluminum 
tank on same face. 

The r a d i a t i o n  exposure t o  t he  i n s u l a t i o n  i n  t h e  Cube B test 

exceeded by more than a decade t h a t  p red ic ted  a t  t h e  bottom of 

t h e  prope l lan t  tank i n  t e n  missions of t h e  Reusable Nuclear 

S h u t t l e  u t i l i z i n g  a 1575-Mw NERVA (Ref. 2 ) .  Radiat ion damage 

t o  t h e  i n su l a t i on ,  per - J  se w a s  t he re fo re  n o t  of prime concern, 

but some quest ion remained as t o  t h e  a b i l i t y  of t h e  foam t o  

adhere t o  t h e  tank under the rmal  cycling.  

of t h i s  tes t ,  a t  least,  t h i s  does not  appear t o  be a problem. 

Under t h e  condi t ions  

This work w a s  conducted a t  t h e  Nuclear Aerospace Research 

F a c i l i t y  (NARF) operated by t h e  Fo r t  Worth opera t ion  of t h e  

Convair Aerospace Division of General Dynamics f o r  t h e  George C. 
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Marshall Space F l i g h t  Center of  t h e  National  Aeronautics and 

Space Administrat ion under Contract NAS8-18024. 

NAS8-18024, t h e  Fo r t  Worth operat ion has performed numerous 

r a d i a t i o n  e f f e c t s  experiments on organic materials and thermal  

i n su l a t i ons  as a p a r t  of t h e  technology program support ing t h e  

development of a nuclear  rocket  vehicle. 

Under Contract 
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11. DESCRIPTION OF TEST 

2.1  T e s t  Art ic le  

The i n s u l a t i o n  material under evaluat ion cons i s ted  of 

Upjohn CPR 385-2 polyurethane foam enclosed i n  g l a s s  c lo th .  

A 2- in . - th ick l a y e r  of foam w a s  sprayed on t h e  tank and enclosed 

i n  two l aye r s  of No. 16 g l a s s  c l o t h  impregnated wi th  Narmco 7343 

urethane adhesive. The g l a s s  c l o t h  w a s  overcoated with a 

thermal- control  coa t ing  of Staco No .  1024 whi te  epoxy enamel 

(S t ab l e r  Pa in t  Mfg. Co.). 

The in su l a t ed  and instrumented tank w a s  suppl ied by NASA- 

MSFC. The 5400-gal tank i s  9 f t  i n  diameter and s l i g h t l y  over 

15 f t  i n  length.  The tank material i s  O.ZS-in.-thick 5456-H321 

aluminum. 

j u s t  south of the  I r r a d i a t e d  Materials Laboratory (IML) (Fig. 1). 

The plumbing (Fig. 2)  cons i s ted  of l i q u i d  n i t rogen  f i l l  and 

grav i ty- dra in  l i n e  and gaseous ni t rogen vent  and r e l i e f  l i n e s  

I t  w a s  mounted v e r t i c a l l y  i n  a four-column s tand  

w i t h  p ressure  gages. 

2.2 Instrumentat ion 

S t r a i n  gages w e r e  mounted along four  l i n e s  running from 

top t o  bottom along t h e  tank w a l l .  A s  viewed from above, t h e  

l i n e s  w e r e  spaced 90 a p a r t  and CCW numbered I, 11, 111, and 

IV. 

0 

The gages w e r e  mounted i n  b i a x i a l  p a i r s ,  one ho r i zon ta l  and 
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Figure  1 Tank Mounted i n  Tes t  P o s i t i o n  
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one ver t ica l ,  a t  s t a t i o n  l o c a t i o n s  corresponding t o  inches above 

t h e  tank base. The gages were Budd M e t a l f i l m  Type S-740, t e m-  

pera tu re  compensated fo r  magnesium a l l o y  with an expansion co- 

e f f i c i e n t  of 15 ppm/'F, and having a gage f a c t o r  of 2.65 a t  75'F 

and r e s i s t a n c e  of  281.3 - +2 ohms. 

mounted on t h e  tank inner  su r face  and e i g h t  p a i r s  on t h e  insu la-  

t i o n  o u t e r  s u r f a c e  j u s t  under t h e  g l a s s  f a b r i c .  S t r a i n  gage 

measurements w e r e  made by recording of t h e  s t r a i n  gage d.c.  

vo l t age  and t h e  d.c. v o l t a g e  drop across  a s tandard  resistor as 

measured wi th  a d i g i t a l  vol tmeter .  

Eight s t r a i n  gage p a i r s  w e r e  

Copper-constantan thermocouples w e r e  mounted along t h e  above 

l i n e s  a t  var ious  loca t ions .  The couples w e r e  made of 10-mil w i r e  

w i t h  32-mil leads.  I n  add i t ion  t o  s i n g l e  thermocouples along 

l i n e  I1 a t  t h e  tank and i n s u l a t i o n  i n t e r f a c e  (0- in.  level ) ,  sets  

of n ine  tempered thermocouples w e r e  embedded t o  d i f f e r e n t  depths 

i n  t h e  i n s u l a t i o n  a t  f o u r  loca t ions .  The n ine  thermocouples i n  

each of these  four  sets w e r e  arranged i n  t w o  groups and posi t ioned 

as i l l u s t r a t e d  i n  Figures 3 and 4 .  The tempering methods w e r e  

such t h a t  one group had a cons tant  length ( - 3  i n . )  of  T/C w i r e  

embedded a t  each level (tempering Method A ) .  The o t h e r  group 

had d i f f e r e n t  lengths  of embedded T/C w i r e  but  a l l  t h e  therm02 

couples w e r e  l i n e d  upon a d i r e c t  path through t h e  i n s u l a t i o n  

(tempering Method B) .  As ind ica ted  i n  t h e  f i g u r e s ,  t h e  embedding 
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Figure 3 Thermocouple Arrangement for Tempering Method A 
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levels w e r e  0 ,  0.5,  1 .0 ,  and 1 .5  i n .  f o r  t h e  thermocouples of 

tempering Method A and 0.12, 0.5,  1.0,  and 1 .5  i n .  f o r  temper- 

ing  Method B. 

i . e . ,  t h e  i n s u l a t i o n  su r face ,  w a s  under t h e  g l a s s  f a b r i c .  

The s i n g l e  common thermocouple a t  t h e  2- in.  level ,  

The loca t ions  on t h e  tank of t h e  ind iv idua l  and sets of  

thermocouples are given i n  Table 1. 

t u r e  recorder  w a s  used f o r  thermocouple readout.  

A Brown mul t ipoin t  tempera- 

I n  add i t ion  t o  t h e  s t r a i n  gages and thermocouples, a cryo-  

gen level  probe c o n s i s t i n g  of  18 r e s i s t o r s  w a s  i n s t a l l e d  i n  t h e  

tank f o r  monitoring t h e  LN level.  The  r e s i s t o r s  w e r e  each 

860-870 ohms. 

a t  the  two lowest r e s i s t o r  levels on t h e  probe f o r  v e r i f y i n g  

r e s i s t o r  immersion i n  LN2 during c a l i b r a t i o n  of the  cryogen 

l i q u i d  level  ind ica t ion  and c o n t r o l  panel.  The probe r e s i s t o r  

s t a t i o n s  and tankage i n  ga l lons  and percent  are given i n  

Table 2 .  

2 

Two copper-constantan thermocouples w e r e  i n s t a l l e d  
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Table  1 

Line  

I 

THERMOCOUPLE LOCATIONS ON TANK 

4 12 24 36 48 60  72 96 120 144 168 

9 

S t a t i o n  Q u a n t i t y  
( i n . )  Pe rcen t  G a l  

Table 2 

SENSOR LOCATIONS I N  LIQUID LEVEL PROBE 

, S t a t i o n  Q u a n t i t y  f 

( i n . )  Pe rcen t  G a l  

12* 

26 

30 

38 

46 

48  

54 

62 

66 

1.0 

1.8 

3.9 

7 .0  

8.0 

11.5 

17.2 

20.0 

- 
54 

97 

211 

378 

432 

621 

929 

1080 

84 

99 

124 

138 

139 

140 

14 1 

149 

158 

33.8 

45.0 

64.2 

75.0 

75.8 

76.6 

77 .4  

83.3 

89.8 

1830 

2430 

3460 

4050 

4090 

4130 

4180 

4500 

4850 

*Reference r e s i s t o r  s t a t i o n  
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111. RESULTS AND DISCUS S I O N  

The i n s u l a t e d  tank w a s  subjec ted  t o  f ive  f i l l- and- dra in  

cycles  wi th  l i q u i d  n i t rogen.  During each period t h a t  t h e  tank 

contained l i q u i d  n i t rogen,  t h e  tank w a s  pressur ized  (by c l o s i n g  

the  exhaust va lve)  and s t r a i n  measurements w e r e  made as a funct ion  

of tank pressure  up t o  a maximum of  27 p s i .  Temperature measure- 

men t s  i n  t h e  i n s u l a t i o n  w e r e  a l s o  made during each f i l l  c y c l e  and 

t h e  tank i n s u l a t i o n  w a s  v i s u a l l y  inspected.  

Data pe r t a in ing  t o  t h e  f i l l- and- dra in  cycles  are t h e  

f ol lowing : 

3 . 1  

Date of  F i l l  

2- 14- 72 
2- 18- 72 
2- 24- 72 
3-  6- 72 
3- 14- 72 

H e a t  Transfer  Data 

I n i t i a l  Quan t i ty  
gal 

4850 
3400 
4850  
4850  
4850  

Duration 
h 
46  
- 
98 
105 

190 

3 . 1 . 1  Temperature Measurements i n  t h e  Insu la t ion  

Data on t h e  temperature g rad ien t  through t h e  i n s u l a t i o n  

w e r e  taken a t  t w o  p o i n t s  on t h e  tank ( l i n e  11, s t a t i o n  1 2  and 

l i n e  11, s t a t i o n  1 2 0 )  during each of t h e  f ive  f i l l  cyc les .  

Two sets  of thermocouples w e r e  used a t  each p o i n t ,  each set 

using d i f f e r e n t  tempering methods. Figures 3 and 4 show t h e  

placement through t h e  i n s u l a t i o n  and i l l u s t r a t e  t h e  two tempering 

16 1 



methods used. As discussed i n  t h e  previous s e c t i o n ,  t h e  place-  

ment method using cons tant  tempering length  i s  c a l l e d  tempering 

method A,and t h e  placement method using var ious  tempering lengths  

i s  c a l l e d  tempering method B. 

Tables 3 through 6 show t h e  temperature g rad ien t  da ta .  

Each set of  d a t a  shown w a s  recorded toward t h e  end of t h e  c y c l e  

when thermal equil ibr ium appeared t o  be  es t ab l i shed .  A s  can be 

seen from t h e  temperature va lues  f o r  t h e  same placements from 

cyc le  t o  c y c l e  t h e r e  w a s  no s i g n i f i c a n t  degradation o f  t h e  e f fec-  

t iveness  of t h e  i n s u l a t i o n  wi th  t i m e .  Although some cons iderable  

v a r i a t i o n  is  no t i ceab le  from c y c l e  t o  c y c l e  i n  measured va lues  

a t  placements toward t h e  ou t s ide  of t h e  i n s u l a t i o n ,  t h i s  i s  be- 

l i eved  t o  be merely a r e f l e c t i o n  of t h e  changing ambient condi- 

t ions .  

On t h e  whole, tempering method A appears t o  be t h e  b e t t e r  

method of thermocouple placement. F igure  5 ,  which i s  a p l o t  of 

measured temperature versus loca t ion  through t h e  i n s u l a t i o n  f o r  

cyc le  1, s t a t i o n  120,  c l e a r l y  i l l u s t r a t e s  t h e  s u p e r i o r i t y  of  

tempering method A. The rad ius  of t h e  tank w a l l  i s  so large 

t h a t  t h e  i n s u l a t i o n  can be e f f e c t i v e l y  t r e a t e d  as a p lane  s l a b  

and, assuming homogeniety, t h e  temperature p r o f i l e  through t h e  

s l a b  should t h e r e f o r e  be l i n e a r .  It can then be seen how much 

more c l o s e l y  t h e  temperatures va lues  measured wi th  thermocouples 
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Table 3 

TEMPERING METHOD A THERMOCOUPLE DATA, STATION 12 

D i s t a n c e  f r o m  
Tank Wall 

( i n . )  

0.0 

0.5 

1.0 

1.5 

2.0 

T e m p e r a t u r e  (OF)  
Fill C y c l e  

1 2 3 4 5 

-308 -308 -312 -310 -312 

-184 -180 -192 -177 -190 

-104 - 97 -114 - 92 -110 

- 48 - 38 - 52 - 32 - 55 
62 78 48  8 4  62 

Table 4 

TEMPERING METHOD A THERMOCOUPLE DATA, STATION 120 

I I 
0.0 

0.5 

1.0 

1.5 

2.0 

-308 -300 -292 -311 -312 

-210 -205 -194 -199 -208 

-105 - 96 -114 - 92 -116 

- 49 - 96 -114 - 92 -116 

64 82 43  86 60  
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Table 5 

TEMPERING METHOD B THERMOCOUPLE DATA, STATION 12 

' Distance from Temperature (OF) 
Tank Wall Fill Cycle 
(in.) 1 2 3 4 5 

0.12 

0.5 

1.0 

1.5 

-286 -288 -292 -286 -292 

-174 -175 -186 -173 -184 

- 96 '- 98 -106 - 82 -102 

- 65 - 58 - 78 - 54 - 74 

Table 6 

TEMPERING METHOD B THERMOCOUPLE DATA, STATION 120 

Distance from 
Tank Wall 

(in.) 

0.12 

0.5 

1.0 

1.5 

Temperature (OF) 

'1 2 3 4 5 

Temperature (OF) 

'1 2 3 4 5 

-168 -162 -160 -160 -166 

- 40 - 30 - 50 - 26 - 52 
-16 - 6 - 2 8  1 - 26 
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placed according t o  tempering method A approach t h e  t h e o r e t i c a l  

s t r a i g h t  l i n e  funct ion than do t h e  temperature values  measured 

wi th  thermocouples placed according t o  tempering method B. 

s h o r t e r  the tempering lengths  the greater the depar ture  of 

measured values  from t h e  t h e o r e t i c a l l y  expected values .  This 

depar ture  i s  a l s o  always i n  t h e  d i r e c t i o n  of too high a measured 

value ,  and t h e  o v e r a l l  r e s u l t s  are exac t ly  what would be expected 

The 

i f  t h e  tempering lengths  of  tempering method B were i n s u f f i c i e n t .  

3 . 1 . 2  Ef fec t ive  Thermal Conductivity of t h e  In su l a t i on  

The su r f ace  area of t h e  tank i s  known, t h e  th ickness  of 

t h e  i n s u l a t i o n  i s  known, and t h e  temperature d i f f e r ence  across  

t h e  i n s u l a t i o n  has been measured. In  order  t o  calculate t h e  

e f f e c t i v e  thermal conduct ivi ty  of t he  tank in su l a t i on  it i s  then 

only necessary  t o  a s c e r t a i n  t h e  average hea t  flow i n t o  t h e  tank. 

Boil-off da t a  w e r e  accumulated over a seven day per iod 

after  t h e  las t  cyc le ,  and from these  d a t a  i t  w a s  determined t h a t  

t h e  average boi l- off  rate of the  l i q u i d  n i t rogen  conten ts  w a s  

approximately 22 gal /h .  

t h e  tank w a s  r e j e c t e d  by vapor izat ion of t h e  l i q u i d  n i t rogen ,  

i t  i s  then poss ib l e  t o  estimate t h e  effective the rma l  conduct ivi ty  

of t h e  tank in su l a t i on  by using t h e  equation 

Assuming t h a t  a l l  of t h e  h e a t  en t e r ing  
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where  k = t h e rma l  conduc t iv i ty  i n  Btu/h-ft-OF 

X = thickness of i n s u l a t i o n  = 1/6  f t  

Q = hea t  flow i n t o  tank = 12,600 Btu/h 

A = sur face  area of tank = 400 f t 2  ( including uninsula ted 
cop p l a t e  and shroud, Fig.  1) 

AT = average temperature d i f f e r ence  across  t h e  i n s u l a t i o n  
= 374OF 

Subs t i t u t i on  of values  i n t o  t h e  equation y i e ld s  

k = 0.014 Btu/h-ft-OF 

which i s  i n  genera l  agreement w i t h  data  from t h e  l i t e r a t u r e .  

3.2 Strain-Gage Data 

The  RIFT tank s t r a i n  measurements w e r e  made by t h e  vol tage-  

r a t i o  technique. This technique i s  based on t h e  p r i n c i p l e  t h a t  

t h e  r a t i o  of t h e  ind iv idua l  vo l t age  drops across  two r e s i s t o r s  

i n  series is  independent of power supply v a r i a t i o n s ,  thus e l i m i -  

nating v a r i a t i o n s  i n  t h e  input  power as a source of e r r o r .  

The s t r a i n  gage equation i s  expressed as 

AR EF = - 
R 

where  F = gage f a c t o r  (2.65 f o r  gages used) 

R = r e s i s t a n c e  of s t r a i n  gage a t  zero  s t r a i n  

AR = change i n  r e s i s t a n c e  of S t r a i n  gage due t o  s t r a i n  

E = s t r a i n  
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Using t h e  vo l tage  r a t i o  technique wi th  Rs cons tan t ,  Equa- 

t i o n  l may be expressed i n  terms of t h e  vo l tage  r a t i o s  a t  zero  

(0)  s t r a i n ,  ER,(O)/ER~(O), and t h e  vo l t age  r a t i o s  a t  a va lue  of  

s t r a i n ,  E ~ ( P ) / E R ~ ( P ) .  

becomes 

With t h e  r a t i o  s u b s t i t u t i o n s ,  Equation 1 

Figures 6 and 7 are t y p i c a l  p l o t s  showing t h e  r e l a t i o n s h i p  

between s t r a i n  and pressure  build-up i n s i d e  t h e  tank. 

of t h e  s t r a in- p res su re  p l o t s  showed dev ia t ions  from t h e  average 

of up t o  +15% f o r  s t a t i o n  56 and - +6% f o r  s t a t i o n  90 over t h e  

f i v e  t he rma l  cyc les .  The dev ia t ions  i n  s lope  w e r e  apparent ly  

due t o  creeping,which w a s  more apparent  during some cyc les  than 

o the r s  because of t h e  g r e a t e r  l a p s e  of t i m e  between da t a  po in t s .  

Overall, t h e  d a t a  d id  no t  i n d i c a t e  s t r a i n s  s u f f i c i e n t  t o  s t r u c-  

t u r a l l y  damage t o  t h e  tank. 

The s lopes  

The output  from s t r a i n  gages loca ted  on t h e  ou te r  sur face  

of t h e  i n s u l a t i o n  showed l a r g e  v a r i a t i o n s  wi th in  a p re s su r i za t ion  

cyc l e  and a l s o  between cycles .  

t ive  values  t o  large negat ive  values  a t  var ious  times w i t h  no 

consis tency w i t h  tank pressure.  T h i s  probably reflects t h e  

s h i f t i n g  of t h e  foam and t h e  c l o t h  f iber  coa t ing  as evidenced 

S t r a i n s  va r i ed  from l a r g e  pos i-  
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by t h e  wrinkl ing of t h e  surface .  These movements may have been 

s u f f i c i e n t  t o  exceed t h e  gage ' l imi t s  o r  cause f a i l u r e  of t h e  

bonding. 

3 . 3  Visual  Appearance of In su l a t i on  

With  l i q u i d  n i t rogen  i n  t h e  tank, t h e  g l a s s  f a b r i c  cover 

over t h e  foam i n s u l a t i o n  became wrinkled and puckered. Figures 

8 ,  9 ,  and 10 are views of t h e  tank during t h e  t h i r d  f i l l  cycle .  

The appearance w a s  e s s e n t i a l l y  t h e  same during a l l  f i v e  cyc les .  

No se r ious  d e t e r i o r a t i o n  of t h e  i n s u l a t i o n  o r  coa t ing  w a s  evi- 

dent .  Af t e r  completion of  t h e  tes t ,  t h e  coa t ing  r e t a i n e d  s l i g h t  

creases a t  t h e  l oca t ions  of t h e  deeper wrinkles.  However, t h e r e  

w a s  no v i s u a l  i nd i ca t ion  of i n s u l a t i o n  separa t ion  from t h e  tank 

o r  o the r  d e t e r i o r a t i o n .  

17 I 



Figure 8 V i e w  of  Insu la t ion  Surface During Third F i l l  Cycle 
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